Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
CAO Pengjun, ZHAO Wenbin, YANG Bin, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002
Citation: CAO Pengjun, ZHAO Wenbin, YANG Bin, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002

Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT

doi: 10.13801/j.cnki.fhclxb.20220420.002
Funds:  Defense Industrial Technology Development Program (JCKY2018207B204)
  • Received Date: 2022-02-11
  • Accepted Date: 2022-04-09
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-21
  • Publish Date: 2023-03-15
  • The optimal resolution determination method of micro-computed tomography (Micro-CT) scanning was presented here based on two-dimensional slices at different resolutions for ideal unit cell model, and the meso-structure and permeability of 3K 5-harness satin woven fabric were characterized based on the CT image at the optimal resolution. Firstly, the ideal unit cell model of the fabric was converted into 2D slices at different resolutions and the effects of resolution on the characterization of cell structure and permeability were investigated. Thereafter, the optimal resolution was determined for fabric CT scanning. Then, the CT image of the fabric with the optimal resolution was used for the meso-structure and through-thickness permeability characterizations of the fabric. The results show that the optimal resolution for the CT scanning of 5-harness satin woven fabric is 15 μm. The path and cross-sectional variation of the yarns in the fabric can be obtained by Micro-CT accurately. The inter-tow voids of the multilayer fabric are arranged periodically along the three main directions with an average inter-tow porosity of 16.6%. The through-thickness permeabilities obtained based on Micro-CT are in good agreement with experimental results.

     

  • loading
  • [1]
    KONSTANTOPOULOS S, HUEBER C, ANTONIADIS I, et al. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: A review of challenges and solutions[J]. Advanced Manufacturing: Polymer & Composites Science,2019,5(3):85-99.
    [2]
    杨旭静, 王跃飞, 韦凯, 等. 基于孔隙控制的车身结构树脂传递模塑成型工艺设计[J]. 复合材料学报, 2017, 34(5):970-977.

    YANG Xujing, WANG Yuefei, WEI Kai, et al. Design of resin transfer molding process for vehicle body structure based on porosity control[J]. Acta Materiae Compositae Sinica,2017,34(5):970-977(in Chinese).
    [3]
    马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化[J]. 复合材料学报, 2021, 38(10):3302-3313.

    MA Yanxu, WANG Jihui, NI Aiqing, et al. Process optimization of typical composite cambered components with large thickness[J]. Acta Materiae Compositae Sinica,2021,38(10):3302-3313(in Chinese).
    [4]
    李嘉禄, 吴晓青, 冯驰. RTM中纤维渗透率预测的研究进展[J]. 复合材料学报, 2006, 23(6):1-8. doi: 10.3321/j.issn:1000-3851.2006.06.001

    LI Jialu, WU Xiaoqing, FENG Chi. Research progress on the permeability prediction of f iber in RTM[J]. Acta Materiae Compositae Sinica,2006,23(6):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.001
    [5]
    詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J]. 复合材料学报, 2021, 38(12):4180-4189.

    ZHAN Mingfan, WANG Jihui, NI Aiqing, et al. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica,2021,38(12):4180-4189(in Chinese).
    [6]
    李香林, 王继辉, 倪爱清, 等. 液体模塑成型工艺用纤维织物厚度方向饱和渗透率的预测模型[J]. 复合材料学报, 2019, 36(6):1428-1437.

    LI Xianglin, WANG Jihui, NI Aiqing, et al. Prediction model of through-thickness saturated permeability of fabric for liquid composite molding[J]. Acta Materiae Compositae Sinica,2019,36(6):1428-1437(in Chinese).
    [7]
    HUANG W, CAUSSE P, HU H, et al. Numerical and experimental investigation of saturated transverse permeability of 2D woven glass fabrics based on material twins[J]. Polymer Composites,2020,41(4):1341-1355. doi: 10.1002/pc.25458
    [8]
    张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5):1175-1183.

    ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica,2020,37(5):1175-1183(in Chinese).
    [9]
    VERNET N, RUIZ E, ADVANI S, et al. Experimental determination of the permeability of engineering textiles: Benchmark II[J]. Composites Part A: Applied Science and Manufacturing,2014,61:172-184. doi: 10.1016/j.compositesa.2014.02.010
    [10]
    YONG A, AKTAS A, MAY D, et al. Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise[J]. Composites Part A: Applied Science and Manufacturing,2021,148(1):106480.
    [11]
    YANG B, HUANG W, CAUSSE P, et al. On the design of test molds based on unidirectional saturated flows to measure transverse permeability in liquid composite molding[J]. Polymer Composites,2022,43(4):2234-2251. doi: 10.1002/pc.26536
    [12]
    李永静, 晏石林, 李德权, 等. 液体模塑成型工艺中纤维束横向渗透率的细观数值模拟[J]. 纺织学报, 2015, 36(8):22-27.

    LI Yongjing, YAN Shilin, LI Dequan, et al. Microscopic numerical simulation of transverse permeability of fiber bundles in liquid composite molding[J]. Journal of Textile Research,2015,36(8):22-27(in Chinese).
    [13]
    倪爱清, 王继辉, 朱以文. 复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J]. 复合材料学报, 2007, 24(6):50-56. doi: 10.3321/j.issn:1000-3851.2007.06.009

    NI Aiqing, WANG Jihui, ZHU Yiwen. Numerical prediction of saturated permeability tensor of a woven fabric for use in the fluid simulation of liquid composite molding[J]. Acta Materiae Compositae Sinica,2007,24(6):50-56(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.009
    [14]
    CHEN Z R, YE L, LU M. Permeability predictions for woven fabric preforms[J]. Journal of Composite Materials,2010,44(13):1569-1586. doi: 10.1177/0021998309355888
    [15]
    ZENG X, ENDRUWEIT A, BROWN L P, et al. Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[J]. Composites Part A: Applied Science and Manufacturing,2015,77:266-274. doi: 10.1016/j.compositesa.2015.03.027
    [16]
    金天国, 魏雅君, 杨波, 等. 预成型体渗透率预测及其受压缩变形的影响[J]. 复合材料学报, 2015, 32(3):840-847.

    JIN Tianguo, WEI Yajun, YANG Bo, et al. Permeability prediction of preform and influence of compression deformation[J]. Acta Materiae Compositae Sinica,2015,32(3):840-847(in Chinese).
    [17]
    张璇, 白国娟, 王星星, 等. 三维织物厚度方向渗透率研究[J]. 中国胶粘剂, 2017, 26(5):21-24.

    ZHANG Xuan, BAI Guojuan, WANG Xingxing, et al. Study on the thickness-permeability of three-dimensional fabric[J]. China Adhesives,2017,26(5):21-24(in Chinese).
    [18]
    YOUSAF Z, POTLURI P, WITHERS P J, et al. Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[J]. International Journal of Solids and Structures,2018,154:78-87. doi: 10.1016/j.ijsolstr.2017.05.044
    [19]
    ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3 D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology,2019,173:99-109. doi: 10.1016/j.compscitech.2019.01.030
    [20]
    STRAUMIT I, HAHN C, WINTERSTEIN E, et al. Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images[J]. Composites Part A: Applied Science and Manufacturing,2016,81:289-295. doi: 10.1016/j.compositesa.2015.11.025
    [21]
    王法琪 严亚波, 温鑫鑫, 等. Micro-CT分辨率对松质骨微观结构及生物力学测量的影响[J]. 现代生物医学进展, 2015, 15(10):1877-1880,1835.

    WANG Faqi, YAN Yabo, WEN Xinxin, et al. The effect of micro-CT resolution on measuring microstructure and mechanical parameters of human lumbar vertebral trabecular bone[J]. Progress in Modern Biomedicine,2015,15(10):1877-1880,1835(in Chinese).
    [22]
    耿冲, 杨永飞, 高莹. 不同分辨率岩石CT图像的优化处理方法[J]. 科学技术与工程, 2014, 14(2):1-4. doi: 10.3969/j.issn.1671-1815.2014.02.001

    GENG Chong, YANG Yongfei, GAO Ying. Optimization of image processing method based on rock CT images of different resolutions[J]. Science Technology and Engineering,2014,14(2):1-4(in Chinese). doi: 10.3969/j.issn.1671-1815.2014.02.001
    [23]
    ALI M A, UMER R, KHAN K A. A virtual permeability measurement framework for fiber reinforcements using micro CT generated digital twins[J]. International Journal of Lightweight Materials and Manufacture,2020,3(3):204-216. doi: 10.1016/j.ijlmm.2019.12.002
    [24]
    王晨晨, 姚军, 杨永飞, 等. 基于CT扫描法构建数字岩心的分辨率选取研究[J]. 科学技术与工程, 2013, 13(4):1050-1052.

    WANG Chenchen, YAO Jun, YANG Yongfei, et al. Study of resolution selection for construction of digtal rock with CT scanning method[J]. Science Technology and Engineering,2013,13(4):1050-1052(in Chinese).
    [25]
    RATHORE J S, VIENNE C, QUINSAT Y, et al. Influence of resolution on the X-ray CT-based measurements of metallic AM lattice structures[J]. Welding in the World,2020,64(8):1367-1376. doi: 10.1007/s40194-020-00920-4
    [26]
    BIGGEMANN J, KLLNER D, SCHATZ J, et al. Influence of CT scanning resolution and volume on FEM-simulation of periodic 3D-printed porous ceramics[J]. Materials Letters,2021,303:130529.
    [27]
    杨斌. 复合材料用纤维织物压缩与渗流性能表征方法研究[D]. 武汉: 武汉理工大学, 2018.

    YANG Bin. Research on compressibility and seepage property characterization methods of preform for FRP[D]. Wuhan: Wuhan University of Technology, 2018(in Chinese).
    [28]
    ZENG X, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing,2014,56(1):150-160.
    [29]
    王浩. 平纹织物复合材料微观结构特征对材料弹性常数的影响研究[D]. 长沙: 国防科学技术大学, 2016.

    WANG Hao. Effects of microstructure characteristics on elastic properties of plain-weave composites[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
    [30]
    RAJAB M A, GEORGE L E. Stamps extraction using local adaptive k-means and ISODATA algorithms[J]. Indonesian Journal of Electrical Engineering and Computer Science,2021,21(1):137-145. doi: 10.11591/ijeecs.v21.i1.pp137-145
    [31]
    TAHIR M W, HALLSTR M S, KERMO M. Effect of dual scale porosity on the overall permeability of fibrous structures[J]. Composites Science & Technology,2014,103:56-62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (1058) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return