Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
CHEN Qian, ZENG Wei, SHI Yikang, et al. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1430-1437. doi: 10.13801/j.cnki.fhclxb.20220419.007
Citation: CHEN Qian, ZENG Wei, SHI Yikang, et al. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1430-1437. doi: 10.13801/j.cnki.fhclxb.20220419.007

Preparation and properties of polylactic acid composite modified by bacterial cellulose

doi: 10.13801/j.cnki.fhclxb.20220419.007
Funds:  National Natural Science Foundation of China (51102179)
  • Received Date: 2022-02-21
  • Accepted Date: 2022-04-10
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-20
  • Publish Date: 2023-03-15
  • Polylactic acid (PLA) is a new green friendly material and has very promising applications. In this work, for effectively resolving the problems of poor toughness and low crystallization rate of PLA, a method of modifying PLA with cellulose was proposed. First, the BC-g-PLA grafting product was obtained by in situ ring opening of L-propyl cross-ester (LLA) using bacterial cellulose (BC) as the substrate, and then the grafting product was added to PLA as a toughening agent, and the composite film material was prepared by the solution casting method. The results show that the reaction efficiency of the solution grafting method is higher than that of the melt grafting method, and the grafting rate can reach 76.60%. Structural testing of the grafted products by FTIR, nuclear magnetic resonance spectrometer and XRD reveal that PLA is successfully grafted onto the BC surface. Polarizing microscopy observed that the spheres have the highest degree of homogeneous refinement when the loading of BC-g-PLA filler as a heterogeneous nucleating agent is 0.6%. It is found through mechanical property tests that the elongation at the break of PLA film can be increased by 175% and tensile strength by 22.7% after toughening and modification. The crystalline properties of the composite film material were tested by differential scanning calorimetry. The crystallinity increases from 2.53% unmodified to 13.26%, and the crystallization rate also increases.


  • loading
  • [1]
    GHASEMI S, BEHROOZ R, GHASEMI I, et al. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA)[J]. Journal of Thermoplastic Composite Materials,2018,31(8):1090-1101. doi: 10.1177/0892705717734600
    GONCALVES C, GONCALVES I C, MAGALHAES F D, et al. Poly(lactic acid) composites containing carbon-based nano-materials: A review[J]. Polymers,2017,9(7):269-305.
    STANDAU T, ZHAO C J, CASTELLON S M, et al. Chemical modification and foam processing of polylactide (PLA)[J]. Polymers,2019,11(2):306.
    ARRIETA M P, FORTUNATI E, DOMINICI F, et al. Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties[J]. Carbohydrate Polymers,2014,107:16-24. doi: 10.1016/j.carbpol.2014.02.044
    HWANG S W, LEE S B, LEE C K, et al. Grafting of maleic anhydride on poly(L-lactic acid): Effects on physical and mechanical properties[J]. Polymer Testing,2012,31(2):333-344. doi: 10.1016/j.polymertesting.2011.12.005
    FUJISAWA S, ZHANG J, SAITO T, et al. Cellulose nanofi-brils as templates for the design of poly(L-lactide)-nucleating surfaces[J]. Polymer,2014,55(13):2937-2942. doi: 10.1016/j.polymer.2014.04.019
    WANG T, DRZAL L T. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5079-5085.
    DOGU B, KAYNAK C. Behavior of polylactide/microcrystalline cellulose biocomposites: Effects of filler content and interfacial compatibilization[J]. Cellulose, 2016, 23(1): 1-12.
    ZHONG C Y. Industrial-scale production and applications of bacterial cellulose[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 33415099.
    REINIATI I, HRYMAK A N, MARGARITIS A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals[J]. Critical Reviews in Biotechnology, 2017, 37(4): 510-524.
    LIN S P, CALVAR I L, CATCHMARK J M, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose,2013,20(5):2191-2219. doi: 10.1007/s10570-013-9994-3
    PARTE F G B, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology,2020,40(3):397-414. doi: 10.1080/07388551.2020.1713721
    张雯, 王学川, 余婷婷, 等. 细菌纤维素/聚乳酸复合膜制备及性能[J]. 精细化工, 2018, 35(10):1695-1701.

    ZHANG Wen, WANG Xuechuan, YU Tingting, et al. Preparation and properties of bacterial cellulose/poly lactic acid composite films[J]. Fine Chemicals,2018,35(10):1695-1701(in Chinese).
    李红月, 卢秀萍, 杨华, 等. 互穿网络聚乳酸/细菌纤维素生物复合材料的制备与性能[J]. 高分子材料科学与工程, 2016, 32(1): 169-173.

    LI Hongyue, LU Xiuping, YANG Hua, et al. Preparation and properties of polylactic acid/bacterial cellulose bio-composites with interpenetrating networks structure[J]. Polymeric Materials Science and Engineering, 2016, 32(1): 169-173(in Chinese).
    LUDDEE M, PIVSA-ART S, SIRISANSANEEYAKUL S, et al. Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites[J]. Energy Procedia,2014,56(56):211-218.
    GANß K, NECHWATAL A, FRANKENFELD K, et al. Difficulties in the use of ground bacterial cellulose (BC) as reinforcement of polylactid acid (PLA) using melt-mixing and extrusion technologies[J]. Open Journal of Composite Materials,2012,2(3):97-103. doi: 10.4236/ojcm.2012.23011
    QU P, GAO Y, WU G F, et al. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils[J]. Bioresources,2010,5(3):1811-1823.
    CHUENSANGJUN C, KANOMATA K, KITAOKA T, et al. Surface-modified cellulose nanofibers-graft-poly(lactic acid) made by ring-opening polymerization of L-lactide[J]. Journal of Polymers and the Environment,2019,27(4):847-861. doi: 10.1007/s10924-019-01398-y
    ARIAS A, HEUZEY M C, HUNEAULT M A, et al. Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites[J]. Cellulose,2015,22(1):483-498. doi: 10.1007/s10570-014-0476-z
    AMBROSIO-MARTÍN J, FABRA M J, LOPEZ-RUBIO A, et al. Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: Enhanced barrier and mechanical properties[J]. Cellulose,2015,22(2):1201-1226. doi: 10.1007/s10570-014-0523-9
    THREEPOPNATKUL P, SITTATTRAKUL A, SUPAWITITPATTANA K, et al. Effect of bacterial cellulose on properties of poly(lactic acid)[J]. Materials Today Proceedings,2017,4(5):6605-6614. doi: 10.1016/j.matpr.2017.06.174
    AVILA RAMIREZ J A, CERRUTTI P, BERNAL C, et al. Nanocomposites based on poly(lactic acid) and bacterial cellulose acetylated by an α-hydroxyacid catalyzed route[J]. Journal of Polymers and the Environment,2019,27(3):510-520. doi: 10.1007/s10924-019-01367-5
    MIAO C, HAMAD W Y. In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153: 549-558.
    PELTZER M, PEI A H, ZHOU Q, et al. Surface modification of cellulose nanocrystals by grafting with poly(lactic acid)[J]. Polymer International,2014,63(6):1056-1062. doi: 10.1002/pi.4610
    GOFFIN A L, RAQUEZ J M, DUQUESNE E, et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites[J]. Biomacromolecules,2011,12(7):2456-2465. doi: 10.1021/bm200581h
    BRAUN B, DORGAN J R, KNAUSS D M. Reactively compatibilized cellulosic polylactide microcomposites[J]. Journal of Polymers and the Environment, 2006, 14(1): 49-58.
    DUBEY S P, THAKUR V K, KRISHNASWAMY S, et al. Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications[J]. Vacuum,2017,146:655-663. doi: 10.1016/j.vacuum.2017.07.009
    吴景, 曾威, 邝美霞, 等. 细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能[J]. 复合材料学报, 2020, 37(12):3026-3034.

    WU Jing, ZENG Wei, KUANG Meixia, et al. Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films[J]. Acta Materiae Compositae Sinica,2020,37(12):3026-3034(in Chinese).
    中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Repulic of China. Plastics—Determination of tensile properties: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    刘辉, 王肖杰, 张留学. 丙交酯开环聚合法合成高分子量聚乳酸[J]. 广州化工, 2015, 43(16): 123-126.

    LIU Hui, WANG Xiaojie, ZHANG Liuxue. Synthesis of high molecular weight poly lactic acid by lactide ring-opening polymerization[J]. Guangzhou Chemical Industry, 2015, 43(16): 123-126(in Chinese).
    ZHU X F, ZHANG J, CHEN B C, et al. In study on synthesis and thermal properties of polylactic acid[C]//IOP. Journal of Physics Conference Series. Shanghai: IOP Publishing LTD., 2018: 550-556.
    TOME L C, PINTO R, TROVATTI E, et al. Transparent bio-nanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach[J]. Green Chemistry,2011,13(2):419-427. doi: 10.1039/c0gc00545b
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (661) PDF downloads(38) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint