Citation: | GAO Yongkang, CHEN Hongsheng, NIE Huihui, et al. Interface connection mechanism and fracture behavior of nickel-based composites fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1797-1806. doi: 10.13801/j.cnki.fhclxb.20220419.006 |
[1] |
LI C, CHANG K, YEH A, et al. Microstructure characterization of cemented carbide fabricated by selective laser melting process[J]. International Journal of Refractory Metals and Hard Materials,2018,75:225-233. doi: 10.1016/j.ijrmhm.2018.05.001
|
[2] |
TANJA T, JOHANNES S, RAINER V, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters,2016,164:428-431. doi: 10.1016/j.matlet.2015.10.136
|
[3] |
SONG J, GUO Q, OUYANG Q, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites[J]. Materials Science and Engi-neering: A,2015,644:79-84. doi: 10.1016/j.msea.2015.07.050
|
[4] |
DENG L, BAI C, JIANG Z, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy[J]. Materials Science and Engineering: A,2021,822:141642. doi: 10.1016/j.msea.2021.141642
|
[5] |
KHORSHID M, JAHROMI S, MOSHKSAR M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion[J]. Materials & Design, 2010, 31: 3880-3884.
|
[6] |
ALMANGOUR B, KIM Y, GRZESIAK D, et al. Novel TiB2-reinforced 316 L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing[J]. Composites Part B: Engineering, 2019, 156: 51-63.
|
[7] |
CHENC, XIE Y, YAN X, et al. Cold sprayed WC reinforced maraging steel 300 composites: Microstructure characterization and mechanical properties[J]. Journal of Alloys and Compounds,2019,785:499-511.
|
[8] |
高颖超, 孙书刚, 钱兵, 等. 粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能[J]. 复合材料学报, 2021, 38(8):2676-2683.
GAO Yingchao, SUN Shugang, QIAN Bing, et al. Preparation of ZrO2 toughened Al2O3 ceramic particles with enhanced high chromium cast iron-based composite material fabricated by powder sintering and casting and its wear resistance[J]. Journal of Composite Materials,2021,38(8):2676-2683(in Chinese).
|
[9] |
崔照雯, 李敬仁, 李泽洲, 等. 粉末冶金法CNTs、Al2O3双增强铜基复合材料性能研究[J]. 机械工程学报, 2013, 49(18):52-56. doi: 10.3901/JME.2013.18.052
CUI Zhaowen, LI Jingren, LI Zezhou, et al. Study on the properties of CNTs and Al2O3 double-enhanced copper-based composite materials[J]. Journal of Mechanical Engineering,2013,49(18):52-56(in Chinese). doi: 10.3901/JME.2013.18.052
|
[10] |
王刚, 徐磊, 崔玉友, 等. TiAl预合金粉末热等静压致密化机制及热处理对微观组织的影响[J]. 金属学报, 2016, 52(9):1079-1088.
WANG Gang, XU Lei, CUI Yuyou, et al. Ther-mal isostatic pressure compaction mechanism of TiAl pre-heated alloy powder and the effect of heat treatment on microstructure[J]. Journal of Metals,2016,52(9):1079-1088(in Chinese).
|
[11] |
葛福国, 彭倍, 柯文超, 等. 电弧增材制造NiTi形状记忆合金成形与性能[J]. 机械工程学报, 2020, 56(8):99-106. doi: 10.3901/JME.2020.08.099
GE Fuguo, PENG Bei, KE Wenchao, et al. Forming and performance of NiTi shape memory alloy fabricated by arc additive manufacturing[J]. Journal of Mechanical Engineering,2020,56(8):99-106(in Chinese). doi: 10.3901/JME.2020.08.099
|
[12] |
杨素媛, 郭丹, 沈娟, 等. SPS制备TiNi增强镁合金复合材料的微观结构及力学性能[J]. 复合材料学报, 2018, 35(2):371-376.
YANG Suyuan, GUO Dan, SHEN Juan, et al. Microstructure and mechanical properties of TiNi-enhanced magnesium alloy composites prepared by SPS[J]. Journal of Compo-site Materials,2018,35(2):371-376(in Chinese).
|
[13] |
GU D, MA J, CHEN H, et al. Laser additive manufactured WC reinforced Fe-based compo-sites with gradient reinforcement/matrix interface and enhanced performance[J]. Composite Structures,2018,192:387-396. doi: 10.1016/j.compstruct.2018.03.008
|
[14] |
MANDAL V, TRIPATHI P, KUMARR A, et al. A study on selective laser melting (SLM) of TiC and B4C reinforced IN718 metal matrix composites (MMCs)[J]. Journal of Alloys and Compounds,2022,901:163527. doi: 10.1016/j.jallcom.2021.163527
|
[15] |
MOHAN S, MANTRI S, PANTAWANE M, et al. In situ reactions during direct laser deposition of Ti-B4C composites[J]. Scripta Materialia,2020,183:28-32. doi: 10.1016/j.scriptamat.2020.03.021
|
[16] |
HAN C, BABICHEVA R, ZHOU K, et al. Mic-rostructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders[J]. Additive Manufacturing,2020,36:101466. doi: 10.1016/j.addma.2020.101466
|
[17] |
FEREIDUNI E, GHASEMI A, ELBESTAWI M. Unique opportunities for microstructure engineering via trace B4C addition to Ti-6 Al-4 V through laser powder bed fusion process: As-built and heat-treated scenarios[J]. Additive Manu-facturing,2022,50:102557. doi: 10.1016/j.addma.2021.102557
|
[18] |
RUEDA C, VALEIRAS E, GARDON M, et al. Effect of ZrH2 particles on the microstructure and mechanical properties of IN718 manufactured by selective laser melting[J]. Materials Science and Engineering: A,2021,813:141123. doi: 10.1016/j.msea.2021.141123
|
[19] |
ZHANG H, GU D, MA C, et al. Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting[J]. Materials Science and Engineering: A,2019,765:138294. doi: 10.1016/j.msea.2019.138294
|
[20] |
NGUYEN Q, ZHU Z, CHUA B, et al. Development of WC-Inconel composites using selective laser melting[J]. Archives of Civil and Mechanical Engineering,2018,18:1410-1420. doi: 10.1016/j.acme.2018.05.001
|
[21] |
XIA Y, CHEN H, LIANG X, et al. Circular oscillating laser melting deposition of nickel-based superalloy reinforced by WC: Microstructure, wear resistance and electrochemical properties[J]. Journal of Manufacturing Processes,2021,68:1694-1704. doi: 10.1016/j.jmapro.2021.06.074
|
[22] |
WANG X, PAN X, SUN P, et al. Significant enhancement in tensile strength and work hardening rate in CoCrFeMnNi by adding TiAl particles via selective laser melting[J]. Materials Science and Engineering: A,2022,831:142285. doi: 10.1016/j.msea.2021.142285
|
[23] |
RONG T, GU D. Formation of novel graded interface and its function on mechanical properties of WC1-X reinforced Inconel 718 composites processed by selective laser melting[J]. Journal of Alloys and Compounds,2016,680:333-342. doi: 10.1016/j.jallcom.2016.04.107
|
[24] |
YAN X, CHEN C, ZHAO R, et al. Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance[J]. Surface and Coatings Technology,2018,371:355-365.
|
[25] |
CAO G, SUN T, WANG C, et al. Investigations of γ', γ'' and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting[J]. Materials Characterization,2018,136:398-406. doi: 10.1016/j.matchar.2018.01.006
|
[26] |
LIN W, CHANG Y, HSU T, et al. Microstructure and tensile property of aprecipitation strengthened high entropy alloy processed by selective laser melting and post heat treat-ment[J]. Additive Manufacturing,2020,36:101601.
|
[27] |
HO I, HSU T, CHANG Y, et al. Effects of CoAl2O4 inoculants on microstructure and mechanical properties of IN718 processed by selective laser melting[J]. Additive Manufacturing,2020,35:101328. doi: 10.1016/j.addma.2020.101328
|
[28] |
ZHANG S, CHEN Z, WEI P, et al. Microstructure and pro-perties of a nano-ZrO2-reinforced AlSi10 Mg matrix compo-site prepared by selective laser melting[J]. Materials Science and Engineering: A,2022,838:142792. doi: 10.1016/j.msea.2022.142792
|
[29] |
LI W, YANG X, XIAO J, et al. Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J]. Ceramics International,2021,47(20):28754-28763. doi: 10.1016/j.ceramint.2021.07.035
|
[30] |
CHEN G, WAN J, HE N, et al. Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China,2018,28(12):2395-2400. doi: 10.1016/S1003-6326(18)64885-X
|
[31] |
CHEN L, GU P, GE T, et al. Effect of laser shock peening on microstructure and mechanical properties of TiC strengthened inconel 625 alloy processed by selective laser melting[J]. Materials Science and Engineering: A,2022,835:142610. doi: 10.1016/j.msea.2022.142610
|
[32] |
TANG M, ZHANG L, ZHANG N. Microstructural evolution, mechanical and tribological properties of TiC/Ti6 Al4 V composites with unique microstructure prepared by SLM[J]. Materials Science and Engineering: A,2021,814:141187. doi: 10.1016/j.msea.2021.141187
|