Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
XU Peng, WANG Yang, WANG Shasha, et al. Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 836-843. doi: 10.13801/j.cnki.fhclxb.20220419.005
Citation: XU Peng, WANG Yang, WANG Shasha, et al. Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 836-843. doi: 10.13801/j.cnki.fhclxb.20220419.005

Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles

doi: 10.13801/j.cnki.fhclxb.20220419.005
  • Received Date: 2022-01-07
  • Accepted Date: 2022-04-04
  • Rev Recd Date: 2022-03-19
  • Available Online: 2022-04-20
  • Publish Date: 2023-02-15
  • Metal nanoparticles show great application on prospect in catalysis, bacteriostasis, water pollution treatment and biomedicine, because of their unique physical and chemical properties. Metal nanoparticles tend to agglomerate in the processes of preparation and use. Therefore, improving the stability of nanoparticles is of great significance to improve their application performance. In this study, porous polyacrylonitrile nanofibers (PPAN NFs) were prepared by electrostatic spinning using polyacrylonitrile (PAN) as substrate and polyvinylpyrrolidone (PVP) as the pore-making agent. On this basis, Ag-PPAN NFs and Cu-PPAN NFs were prepared by in-situ loading of silver and copper nanoparticles on the surface of PPAN NFs by impregnation deposition. The morphologies and structures of the prepared nanofibers were characterized by FESEM, EDS and XRD, and the antibacterial properties of Ag-PPAN NFs and Cu-PPAN NFs against E. coli, S. aureus and C. albicans were studied by bacteriostatic zone method and FESEM observation. The results show that PPAN NFs provide a rich mesoporous structure for loading of Ag NPs and Cu NPs and inhibited the aggregation of nanoparticles. The prepared Ag-PPAN NFs and Cu-PPAN NFs show good antibacterial activities against E. coli, S. aureus and C. albicans, and which could be used as a new kind of antibacterial fiber material.


  • loading
  • [1]
    BEHRAVAN M, PANAHI A H, NAGHIZADEH A, et al. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity[J]. International Journal of Biological Macromolecules,2019,124:148-154. doi: 10.1016/j.ijbiomac.2018.11.101
    TAO Y, JU E G, REN J S, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Advanced Materials,2015,27(6):1097-1104. doi: 10.1002/adma.201405105
    PATTANAYAK D S, MALLICK N, THAKUR C, et al. Plant mediated green synthesis of silver nanoparticles for antimicrobial application: Present status[J]. Journal of the Indian Chemical Society,2020,97(7):1108-1114.
    SHAIKH S, NAZAM N, RIZVI S M D, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance[J]. International Journal of Molecular Sciences,2019,20(10):2468.
    MUBARAKALI D, THAJUDDIN N, JEGANATHAN K, et al. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens[J]. Colloids and Surfaces B: Biointerfaces,2011,85(2):360-365. doi: 10.1016/j.colsurfb.2011.03.009
    DURAN N, DURAN M, DE JESUS M B, et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine-Nanotechnology and Medicine,2016,12(3):789-799. doi: 10.1016/j.nano.2015.11.016
    SHU Z, ZHANG Y, YANG Q, et al. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Research Letters,2017,12(1):1-7. doi: 10.1186/s11671-017-1859-5
    ANANDALAKSHMI K, VENUGOBAL J, RAMASAMY V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity[J]. Applied Nanoscience,2016,6(3):399-408. doi: 10.1007/s13204-015-0449-z
    CHEN Y F, ZHANG Y T, LIU J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions[J]. Chemical Engineering Journal,2012,210:298-308. doi: 10.1016/j.cej.2012.08.100
    刘亚飞, 李梦, 赵欣, 等. 浅谈纳米银粒子的制备及其在抗菌涂料中的应用[J]. 化工新型材料, 2019, 47(2):37-41.

    LIU Yafei, LI Meng, ZHAO Xin, et al. Discussion on preparation of silver nanoparticles and its application in antibactrial coating[J]. New Chemical Materials,2019,47(2):37-41(in Chinese).
    HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds[J]. Applied Catalysis B: Environmental,2020,261:118248. doi: 10.1016/j.apcatb.2019.118248
    WANG L L, HU C, SHAO L Q, et al. The antimicrobial activity of nanoparticles: Present situation and prospects for the future[J]. International Journal of Nanomedicine,2017,12:1227-1249. doi: 10.2147/IJN.S121956
    SANCHEZ-LOPEZ E, GOMES D, ESTERUELAS G, et al. Metal-based nanoparticles as antimicrobial agents: An overview[J]. Nanomaterials,2020,10(2):292.
    KHATRI O P, ICHII T, MURASE K, et al. Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface[J]. Journal of Colloid and Interface Science,2012,382:22-27. doi: 10.1016/j.jcis.2012.06.001
    DAI H, CHEN Y L, LIN Y Y, et al. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation[J]. Electrochimica Acta,2012,85:644-649. doi: 10.1016/j.electacta.2012.08.109
    ZHANG P, SHAO C L, ZHANG Z Y, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale,2011,3(8):3357-3363. doi: 10.1039/c1nr10405e
    李甫, 康卫民, 程博闻, 等. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11):56-60. doi: 10.11868/j.issn.1001-4381.2016.11.009

    LI Fu, KANG Weimin, CHENG Bowen, et al. Preparation and electrochemical properties of silver doped hollow carbon nanofibers[J]. Journal of Materials Engineering,2016,44(11):56-60(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.11.009
    DE FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B: Biointerfaces,2014,113:115-124. doi: 10.1016/j.colsurfb.2013.08.006
    XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nano-fibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A,2014,2(40):16905-16914. doi: 10.1039/C4TA03732D
    向军, 张雄辉, 褚艳秋, 等. Fe-Ni合金/Ni铁氧体复合纳米纤维的制备、表征与磁性能研究[J]. 化学学报, 2012, 70:2265-2272. doi: 10.6023/A12080587

    XIANG Jun, ZHANG Xionghui, CHU Yanqiu, et al. Preparation, characterization and magnetic properties of Fe-Ni alloy/Ni-ferrite composite nanofibers[J]. Acta Chemica Sinica,,2012,70:2265-2272(in Chinese). doi: 10.6023/A12080587
    WANG F Y, SUN Y Q, SUN Y Q, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264-273.
    ZHAO W X, CI S Q, HU X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale,2019,11(11):4688-4695. doi: 10.1039/C9NR00160C
    WANG M Q, YE C, LIU H, et al. General synthesis of nano-metal phosphides embedded N-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values[J]. Angewandte Chemie International Edition,2017,10(57):150.
    SONG Z M, LIU X F, SUN X, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon,2019,151:36-45. doi: 10.1016/j.carbon.2019.05.025
    FU Y, YU H Y, JIANG C, et al. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J]. Advanced Functional Materials,2018,28(9):1705094.
    孔祥前, 豆彩霞, 柴源涛, 等. 银缓释载银杀菌活性炭的低温水热炭化法制备[J]. 功能材料, 2016, 1(47):1203-1206.

    KONG Xiangqian, DOU Caixia, CHAI Yuantao, et al. Acti-vated carbon with silver control release and antibacterial behavior by low temperature hydrothermal method[J]. Journal of Functional Materials,2016,1(47):1203-1206(in Chinese).
    兰小林, 段正康, 王永胜, 等. 不同晶相结构ZrO2负载铜基催化剂用于二乙醇胺脱氢反应[J]. 精细化工, 2019, 36(12):2438-2445.

    LAN Xiaolin, DUAN Zhengkang, WANG Yongsheng, et al. ZrO2 with different crystal structure supported Cu catalysts for the dehydrogenation of diethanolamine[J]. Fine Chemicals,2019,36(12):2438-2445(in Chinese).
    罗凤凤, 王日昕, 廖先金, 等. 葡萄糖还原制备Cu2O及其形貌表征[J]. 化工新型材料, 2020, 48:48-50.

    LUO Fengfeng, WANG Rixin, LIAO Xianjin, et al. Preparation and morphology characterization of Cu2O by glucose reducing[J]. New Chemical Materials,2020,48:48-50(in Chinese).
    CHEN Y Q, WU W, XU Z Q, et al. Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli[J]. Royal Society Open Science, 2020, 7(7): 192019.
    CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13): 13501.
    WANG H L, HAO L L, WANG P, et al. Release kinetics and antibacterial activity of curcumin loaded zein fibers[J]. Food Hydrocolloids,2017,63:437-446. doi: 10.1016/j.foodhyd.2016.09.028
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (913) PDF downloads(34) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint