Citation: | YE Xicong, YANG Chao, OUYANG Bin, GAO Qi, WU Haihua, HE Enyi, YE Yongsheng. Graphene-enhanced electromagnetic wave absorbing properties of FeSiAl-MoS2/PLA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 911-928. doi: 10.13801/j.cnki.fhclxb.20220415.004 |
[1] |
CHENG J Y, ZHANG H B, XIONG Y F, et al. Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review[J]. Journal of Materiomics,2021,7(6):1233-1263. doi: 10.1016/j.jmat.2021.02.017
|
[2] |
RUSAKOVA A, NOSACHEV I, LYSENKO V, et al. Impact of high strength electromagnetic fields generated by Tesla transformer on plant cell ultrastructure[J]. Information Processing in Agriculture,2017,4(3):253-258. doi: 10.1016/j.inpa.2017.05.002
|
[3] |
TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon,2021,172:542-555. doi: 10.1016/j.carbon.2020.10.062
|
[4] |
ZENG X J, CHENG X Y, YU R H, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon,2020,168:606-623. doi: 10.1016/j.carbon.2020.07.028
|
[5] |
LIU D, ZHANG Y, ZHOU C, et al. A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2020,818:152861. doi: 10.1016/j.jallcom.2019.152861
|
[6] |
ZHANG Y, ZHOU T D. Structure and electromagnetic pro-perties of FeSiAl particles coated by MgO[J]. Journal of Magnetism and Magnetic Materials,2017,426:680-684. doi: 10.1016/j.jmmm.2016.10.144
|
[7] |
ZHOU L, XU H, SU G X, et al. Tunable electromagnetic and broadband microwave absorption of SiO2-coated FeSiAl absorbents[J]. Journal of Alloys and Compounds,2021,861:157966. doi: 10.1016/j.jallcom.2020.157966
|
[8] |
LEI C L, GE C N, GE X, et al. Enhanced microwave absorption of flaky FeSiAl/ZnO composites fabricated via precipitation[J]. Materials Science & Engineering B,2022,275:115502.
|
[9] |
TIAN W, ZHANG X Z, GUO Y, et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption[J]. Carbon,2021,173:185-193. doi: 10.1016/j.carbon.2020.11.002
|
[10] |
贾琨, 王东红, 李克训, 等. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5):805-811. doi: 10.11896/cldb.201905012
JIA Kun, WANG Donghong, LI Kexun, et al. Progress and future developments of graphene composites serving as microwave absorbing materials[J]. Materials Reports,2019,33(5):805-811(in Chinese). doi: 10.11896/cldb.201905012
|
[11] |
谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2211-2221.
XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sincia, 2022, 39(5): 2211-2221(in Chinese).
|
[12] |
SONG Q, YE F, KONG L, et al. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range[J]. Advanced Functional Materials,2020,30(31):2000475. doi: 10.1002/adfm.202000475
|
[13] |
WANG Y, CHEN D, YIN X, et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2015,7:26226-26234.
|
[14] |
WANG J N, WANG Q J, WANG W, et al, Hollow Ni/C microsphere@graphene foam with dual-spatial and porous structure on the microwave absorbing performance[J]. Journal of Alloys and Compounds, 2021, 873: 159811.
|
[15] |
LI M, CAO X, ZHENG S, et al. Ternary composites RGO/MoS2@Fe3O4: Synthesis and enhanced electromagnetic wave absorbing performance[J]. Journal of Materials Science Materials in Electronics,2017,28(22):16802-16812. doi: 10.1007/s10854-017-7595-x
|
[16] |
ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. doi: 10.1016/j.jcis.2020.09.122
|
[17] |
吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):158-168.
WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):158-168(in Chinese).
|
[18] |
叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302.
YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese).
|
[19] |
胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7):3303-3316.
HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid compo-sites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3303-3316(in Chinese).
|
[20] |
中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.
Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
|
[21] |
ZHANG M, QIAN X, ZENG Q W, et al. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber[J]. Carbon,2021,175:499-508. doi: 10.1016/j.carbon.2021.01.013
|
[22] |
XIANG Z, HUANG C, SONG Y M, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon,2020, 167:364-377.
|
[23] |
YANG K, CUI Y H, LIU Z H, et al. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-perfor-mance electromagnetic wave absorber[J]. Chemical Engi-neering Journal,2021,426(1):131308.
|
[24] |
SHU R W, WAN Z L, ZHANG J B, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance[J]. Composites Science and Technology,2021,210:108818. doi: 10.1016/j.compscitech.2021.108818
|
[25] |
DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon,2021,179:566-578. doi: 10.1016/j.carbon.2021.04.050
|
[26] |
GAO J, DING Q, YAN P, et al. Highly improved microwave absorbing and mechanical properties in cold sintered ZnO by incorporating graphene oxide[J]. Journal of the European Ceramic Society,2022,42(3):993-1000. doi: 10.1016/j.jeurceramsoc.2021.10.053
|
[27] |
YAN F, ZHANG S, ZHANG X, et al. Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry C,2018,6(47):12781-12787. doi: 10.1039/C8TC04222E
|
[28] |
XU Z, DU Y, LIU D, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption[J]. ACS Applied Materials & Interfaces,2019,11(14):4268-4277.
|
[29] |
朱晓宇, 邱红芳, 陈平. Co@CNT复合电磁波吸收剂的制备及其吸波性能[J]. 材料研究学报, 2021, 35(11):811-819.
ZHU Xiaoyu, QIU Hongfang, CHEN Ping. Preparation and electromagnetic wave absorbing properties of composites of cobalt coated graphitic carbon nitride Co@CNTs[J]. Chinese Journal of Materials Research,2021,35(11):811-819(in Chinese).
|
[30] |
王建江, 蔡旭东, 温晋华, 等. FeSiAl软磁合金空心微珠的微观结构控制及其低频吸波性能[J]. 稀有金属材料与工程, 2018, 47(10):3072-3079.
WANG Jianjiang, CAI Xudong, WEN Jinhua, et al. Microstructure control of FeSiAl magnetically soft alloy hollow microspheres and their microwave absorption properties at low frequency[J]. Rare Metal Materials and Engineering,2018,47(10):3072-3079(in Chinese).
|
[31] |
ZHANG X Z, GUO Y, RASHAD A, et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance[J]. Journal of Alloys and Compounds,2020,828:154079. doi: 10.1016/j.jallcom.2020.154079
|
[32] |
黄巨龙. 热压烧结FeSiAl/碳系吸收剂/Al2O3复合材料的制备及其电磁性能研究[D]. 西安: 长安大学, 2019.
HUANG Julong. Study on preparation and electromagnetic properties of hot pressed sintered FeSiAl/carbon-based absorbent/Al2O3 composites[D]. Xi’an: Chang’an University, 2019(in Chinese).
|
[33] |
ZHOU T D, XUE J, LIU W B, et al. Microstructural and magnetic evolution of MnZn/FeSiAl composites synthesized by mechanochemistry[J]. Ceramics International,2020,46(2):1784-1792. doi: 10.1016/j.ceramint.2019.09.153
|
[34] |
YAN H Y, ZHOUG L, TANG J L, et al. Decreasing the complex permittivity to enhance microwave absorption properties of flaky FeSiAl/MnZn ferrites composites[J]. Journal of Materials Science: Materials in Electronics,2021,32:18371-18380. doi: 10.1007/s10854-021-06380-w
|
[35] |
LEI C, DU Y. Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites[J]. Journal of Alloys and Compounds,2020,822:153674. doi: 10.1016/j.jallcom.2020.153674
|
[36] |
ZHOU L, HUANG J L, WANG H B, et al. FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties[J]. Springer US,2019,30(2):1896-1906.
|
[37] |
TIAN W, LI J Y, LIU Y F, et al. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption pro-perties in low-frequency bands[J]. Nano-Micro Letters,2021,13(10):308-321. doi: 10.1007/s40820-021-00678-4
|
[38] |
PAN Y, LI J Y, LIU Z Y, et al. Inorganic/organic bilayer of silica/acrylic polyurethane decorating FeSiAl for enhanced anti-corrosive microwave absorption[J]. Applied Surface Science,2021,567:150829. doi: 10.1016/j.apsusc.2021.150829
|
[39] |
GUO Y, JIAN X, ZHANG L, et al. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature[J]. Chemical Engineering Journal,2020,384:123371. doi: 10.1016/j.cej.2019.123371
|
[40] |
YANG C, DAI S L, ZHANG X Y, et al. Electromagnetic wave absorption property of graphene with Fe3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2016,16:1483-1490. doi: 10.1166/jnn.2016.10707
|
[41] |
ZHANG K, LUO J H, YU N, et al. Synthesis and excellent electromagnetic absorption properties of reduced graphene oxide/PANI/BaNd0.2Sm0.2Fe11.6O19 nanocompo-sites[J]. Journal of Alloys and Compounds,2019,779:270-279. doi: 10.1016/j.jallcom.2018.11.284
|
[42] |
LEI Y M, YAO Z J, LIN H Y, et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites[J]. Materials Letters,2019,236:456-459. doi: 10.1016/j.matlet.2018.10.158
|
[43] |
LI W X, QI H X, GUO F, et al. Co nanoparticles supported on cotton-based carbon fibers: A novel broadband microwave absorbent[J]. Journal of Alloys and Compounds,2019,772:760-769. doi: 10.1016/j.jallcom.2018.09.075
|
[44] |
ZHOU N, AN Q D, XIAO Z Y, at el. Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance[J]. RSC Advances,2017,7:45156-45169. doi: 10.1039/C7RA06751H
|
[45] |
XUE W, YANG G, BI S, et al. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption[J]. Carbon,2021,173(48):521-527.
|
[46] |
MO Z C, YANG R L, LU D W, et al. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance[J]. Carbon,2019,144:433-439. doi: 10.1016/j.carbon.2018.12.064
|
[47] |
ZOU C W, YAO Y D, WEI N D, et al. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites[J]. Composites Part B: Engineering,2015,77:209-214.
|
[48] |
FANG J Y, LIU T, CHEN Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber[J]. Nanoscale,2016, 16:8899-8909.
|
[49] |
WANG J W, WANG B B, FENG A L, et al. Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement[J]. Journal of Alloys and Compounds,2020,834:155092. doi: 10.1016/j.jallcom.2020.155092
|
[50] |
CUI Y, XU K Z, ZHU B, et al. Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas[J]. Journal of Alloys and Compounds,2022,907:164453. doi: 10.1016/j.jallcom.2022.164453
|
[51] |
ZHANG W D, ZHANG X, ZHU Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J]. Journal of Colloid and Interface Science,2021,586:457-468. doi: 10.1016/j.jcis.2020.10.109
|
[52] |
SUN Z H, YAN Z Q, YUE K C, et al. Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption[J]. Applied Surface Science,2021,538:14793.
|
[53] |
XU J, CUI Y H, WANG J Q, et al. Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties[J]. Chemical Engi-neering Journal,2020,401:126027. doi: 10.1016/j.cej.2020.126027
|
[54] |
WANG H Y, SUN X B, YANG S H, et al. 3D ultralight hollow NiCo compound@MX high-efficient microwave absorption[J]. Nano-Micro Letters,2021,13(12):330-344.
|
[55] |
DONG Y Y, ZHU X J, PAN F, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal,2021,426:131272. doi: 10.1016/j.cej.2021.131272
|