Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
JIA Xi'ning, WANG Yan, SHI Hui, et al. Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003
Citation: JIA Xi'ning, WANG Yan, SHI Hui, et al. Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003

Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate

doi: 10.13801/j.cnki.fhclxb.20220415.003
  • Received Date: 2022-02-21
  • Accepted Date: 2022-04-10
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-20
  • Publish Date: 2023-03-15
  • The development and preparation of low-cost, defect less and high-efficiency graphene nanoplatelets hybrid flame retardant is of great significance to achieve the multifunctionality of composites. A graphene nanoplatelets hybrid melamine phosphate flame retardant (GMP) with flame retardant and thermal conductivity was prepared by the reaction of powder graphite (GRA) with phosphoric acid liquid phase after mechanical ball milling with melamine as a stripping agent. The morphology, structure, composition and thermal stability of GMP were characterized. The flame retardant, thermal decomposition and thermal conductivity of GMP epoxy resin (EP) composites were studied. Thermogravimetric analysis show that the initial decomposition temperature of GMP increases 29.3℃ from melamine phosphate (MP), which matches more with EP, contributing to the improvement of flame retardant efficiency of this EP composites. The results show that when the addition of GMP reaches 30wt%, EP composites achieve the limit oxygen index of 30.4%, the vertical combustion of UL 94 reached V-0 level, the peak heat release rate (PHRR) decreases by, and the peak smoke release rate (PSPR) decreased by 69% and 74.0% respectively. The thermal conductivity increases to 2.10 W·m−1·K−1, which is increased by 708% compared with EP. This is because the interaction between graphene nanoplatelets (GNPs) and MP in GMP promote the formation of dense expanded carbon layer on EP, which effectively improves the flame retardancy of EP composites. With the increase of GMP content, the thermal conductivity of EP composite is improved by the formation of GNPs and graphite heat transfer channel. The research provides an idea for the design and preparation of graphene nanoplatelets hybrid flame retardants with both flame retardancy and thermal conductivity to solve the fire hazard caused by thermal deposition of EP composites.


  • loading
  • [1]
    ZHANG D L, LIU S N, CAI H W, et al. Enhanced thermal conductivity and dielectric properties in electrostatic self-assembly 3D pBN@nCNTs fillers loaded in epoxy resin composites[J]. Journal of Materiomics,2020,6(4):751-759. doi: 10.1016/j.jmat.2020.06.013
    HUANG J, YANG W, ZHU J, et al. Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2019,123:79-85. doi: 10.1016/j.compositesa.2019.05.002
    LI A, XU W, CHEN R, et al. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin[J]. Composites Part A: Applied Science and Manufacturing,2018,112:558-571. doi: 10.1016/j.compositesa.2018.07.001
    FANG F, RAN S, FANG Z, et al. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water[J]. Composites Part B: Engineering,2019,165:406-416. doi: 10.1016/j.compositesb.2019.01.086
    李想, 陈润华, 魏毅, 等. 聚磷酸铵-三聚氰胺-三嗪成炭剂协同阻燃改性环氧树脂及玻璃纤维增强树脂复合材料[J]. 复合材料学报, 2021, 38(9):2796-2806.

    LI Xiang, CHEN Runhua, WEI Yi, et al. Flame retardant epoxy resins and glass fiber reinforced epoxy composites synergistically modified by ammonium polyphosphate, melamine and tria-zine carbon-forming agent[J]. Acta Materiae Compositae Sinica,2021,38(9):2796-2806(in Chinese).
    FENG Y, LI X, ZHAO X, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating "branch-like" flame retardant-functionalized graphene[J]. ACS Applied Materials & Interfaces,2018,10(25):21628-21641.
    MESTRY S, MHASKE S T. Synthesis of epoxy resins using phosphorus-based precursors for flame-retardant coating[J]. Journal of Coatings Technology and Research,2019,16(3):807-818. doi: 10.1007/s11998-018-00157-3
    江平开, 陈金, 黄兴溢. 高导热绝缘聚合物纳米复合材料的研究现状[J]. 高电压技术, 2017, 43(9):2791-2799.

    JIANG Pingkai, CHEN Jin, HUANG Xingyi. Research status of thermally conductive but electrically insulating polymer nanocomposites[J]. High Voltage Engineering,2017,43(9):2791-2799(in Chinese).
    LUO F, WU K, SHI J, et al. Green reduction of graphene oxide by polydopamine to a construct flexible film: Superior flame retardancy and high thermal conductivity[J]. Journal of Materials Chemistry A,2017,5(35):18542-18550. doi: 10.1039/C7TA04740A
    SHAN L, YAN H, FANG Z, et al. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin[J]. Composites Science & Technology,2014,90(10):40-47.
    LIN L, PENG H, LIU Z. Synthesis challenges for graphene industry[J]. Nature Materials,2019,18(6):520-524. doi: 10.1038/s41563-019-0341-4
    JEON I Y, ZHANG S, ZHANG L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect[J]. Advanced Materials,2013,25(42):6138-6145. doi: 10.1002/adma.201302753
    LEON V, QUINTANA M, ANTONIA HERRERO M, et al. Few-layer graphenes from ball-milling of graphite with melamine[J]. Chemical Communications,2011,47(39):10936-10938. doi: 10.1039/c1cc14595a
    LEÓN V, RODRIGUEZ A M, PRIETO P, et al. Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions[J]. ACS Nano,2013,8(1):563-571.
    CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering,2019,162(4):283-288.
    ZHANG A, LUAN J, ZHENG Y, et al. Effect of percolation on the electrical conductivity of amino molecules non-covalently coated multi-walled carbon nanotubes/epoxy composites[J]. Applied Surface Science,2012,258(22):8492-8497. doi: 10.1016/j.apsusc.2012.04.167
    SHEN X, WANG Z, WU Y, et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites[J]. Nano Letters,2016,16(6):3585-3593. doi: 10.1021/acs.nanolett.6b00722
    KIM H S, JANG J, LEE H, et al. Thermal management in polymer composites: A review of physical and structural parameters[J]. Advanced Engineering Materials,2018,20(10):180-204.
    ZHENG Z, YANG T, WANG B, et al. Microencapsulated melamine phosphate via solgel method and its application in halogen-free and intumescent flame-retarding acrylonitrile-butadiene-styrene copolymer[J]. Polymer International,2015,64(9):1275-1288. doi: 10.1002/pi.4919
    沈聃, 陈力, 徐英俊, 等. 二苯氧基磷酸三聚氰胺盐阻燃改性环氧树脂[J]. 化学研究与应用, 2017, 29(7):1050-1055. doi: 10.3969/j.issn.1004-1656.2017.07.023

    SHEN Dan, CHEN Li, XU Yingjun, et al. Flame-retardant epoxy resin modified with melamine diphenyl hydrogen phosphate[J]. Chemical Research and Application,2017,29(7):1050-1055(in Chinese). doi: 10.3969/j.issn.1004-1656.2017.07.023
    QIN P, YI D, HAO J. Bi-layer molybdenum di-sulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock[J]. Advanced Powder Technology,2021,32(5):1594-1601. doi: 10.1016/j.apt.2021.03.018
    姜鹏, 张胜, 谷晓昱, 等. 新型三聚氰胺盐类阻燃剂的合成及其在聚乳酸中的应用[J]. 化工新型材料, 2017, 45(5):197-199.

    JIANG Peng, ZHANG Sheng, GU Xiaoyu, et al. Synthesis of novel melamine salt flame retardant and its application in poly(lactic acid)[J]. New Chemical Materials,2017,45(5):197-199(in Chinese).
    苗瑞珍. 三聚氰胺磷酸盐/季戊四醇复配阻燃PE的RMD模拟[D]. 太原: 中北大学, 2016.

    MIAO Ruizhen. Molecular dynamics simulations for flame retarded polyethylene with melamine phosphate and pentaerythritol[D]. Taiyuan: North University of China, 2016(in Chinese).
    郭承鑫, 秦铭骏, 翟一霖, 等. 杂化三聚氰胺聚磷酸盐的合成及其在聚酰胺6中的阻燃应用[J]. 中国塑料, 2019, 33(8):44-48.

    GUO Chengxin, QIN Mingjun, ZHAI Yilin, et al. Synthesis of melamine polyphosphate hybrid and its application for flame retardancy of polyamide 6[J]. China Plastics,2019,33(8):44-48(in Chinese).
    中国石油和化学工业协会. 塑料用氧指数法测定燃烧行为第二部分: 室温实验: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2010.

    China Petroleumand Chemical Industry Association. Plastics: Determination of burning behaviour by oxygen index Part 2: Guidance: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2010(in Chinese).
    中国国家标准化管理委员会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    International Organization for Standardization. Reaction to fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method): ISO 5660-1[S]. Geneva: International Organization for Standardization, 2002.
    LI L, HU H, DING S. Facile synthesis of ultrathin and perpendicular NiMn2O4 nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors[J]. Chemical Journal of Chinese Universities,2018,5:1714-1720. doi: 10.1039/C8QI00121A
    徐少洪, 王正洲. 纳米三聚氰胺磷酸盐的合成及其在酚醛泡沫中的应用[J]. 材料研究学报, 2015, 29(5):377-382.

    XU Shaohong, WANG Zhengzhou. Preparation of nano melamine phosphate and its application in phenolic foam[J]. Chinese Journal of Materials Research,2015,29(5):377-382(in Chinese).
    WEI D, LIU Y, WANG Y, et al. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    FENG D, ZHOU Z, BO M. An investigation of the thermal degradation of melamine phosphonite by XPS and thermal analysis techniques[J]. Polymer Degradation & Stability,1995,50(1):65-70.
    LEWIN M. Synergism and catalysis in flame retardancy of polymers[J]. Polymers for Advanced Technologies,2001,12(3):215-222.
    HUANG T, ZENG X, YAO Y, et al. Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity[J]. RSC Advances,2016,6(42):35847-35854. doi: 10.1039/C5RA27315C
    TENG C, MA C M, CHIOU K, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Materials Chemistry and Physics,2011,126(3):722-728. doi: 10.1016/j.matchemphys.2010.12.053
    WANG F, SHI W, MAI Y, et al. Effect of thermal conductive fillers on the flame retardancy, thermal conductivity, and thermal behavior of flame-retardant and thermal conductive polyamide 6[J]. Materials,2019,12(24):4114. doi: 10.3390/ma12244114
    FENG Y, HU J, XUE Y, et al. Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene[J]. Journal of Materials Chemistry A,2017,5(26):13544-13556. doi: 10.1039/C7TA02934A
    CHOI S, KIM J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers[J]. Composites Part B: Engineering,2013,51:140-147. doi: 10.1016/j.compositesb.2013.03.002
    ZHANG S, TIAN Y, GU X, et al. Improving the flame resistance and thermal conductivity of ethylene-vinyl acetate composites by incorporating hexachlorocyclotriphosphazene-modified graphite and carbon nanotubes[J]. Polymer Composites,2018,39(S2):E891-E901. doi: 10.1002/pc.24304
    GU J, LIANG C, ZHAO X, et al. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities[J]. Compo-sites Science and Technology,2017,139:83-89. doi: 10.1016/j.compscitech.2016.12.015
    SONG S H, PARK K, KIM B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials,2013,25(5):732-737. doi: 10.1002/adma.201202736
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1138) PDF downloads(60) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint