Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
SUN Shubo, YU Haihan, LI Qiang, et al. Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001
Citation: SUN Shubo, YU Haihan, LI Qiang, et al. Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1534-1540. doi: 10.13801/j.cnki.fhclxb.20220415.001

Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties

doi: 10.13801/j.cnki.fhclxb.20220415.001
Funds:  National Natural Science Foundation of China (51872121; 22104043; 51902129); Taishan Scholars Program; Case-by-Case Project for Top Outstanding Talents of Jinan; Project of "20 Items of University" of Jinan (2018 GXRC001); 111 Project of International Corporation on Advanced Cement-based Materials (D17001)
  • Received Date: 2022-02-24
  • Accepted Date: 2022-04-04
  • Rev Recd Date: 2022-03-24
  • Available Online: 2022-04-17
  • Publish Date: 2023-03-15
  • Facilitating the efficient separation of carriers in photocatalytic processes has always been a problem for researchers. Recently, the use of piezoelectric effect as an effective strategy to enhance photocatalytic process from inhibitting the recombination of electrons and holes has attracted great interest. Here, we prepared 1D NaNbO3 nanorods coated with g-C3N4 heterojunction materials as the object to investigate the performance enhancement mechanism in the piezo-photocatalytic process by applying an ultrasonic field to introduce the piezoelectric effect. The microscopic morphology and bonding of the materials were investigated through SEM and XPS characterization. The results show that after the introduction of the piezoelectric effect using ultrasonic, NaNbO3@g-C3N4 exhibites a higher H2 evolution rate in the piezo-photocatalytic process (1.02 mmol·g−1·h−1) than in the single photocatalytic process (0.49 mmol·g−1·h−1), indicating that the constructed NaNbO3@g-C3N4 heterojunction materials with the support of piezoelectric effect greatly promote the separation of carriers in the photocatalytic process, inhibite their complexation and improve the photocatalytic performance. In addition, based on the data analysis, the mechanism of piezo-photocatalytic coupling effects is proposed for the design and development of highly efficient piezoelectric photocatalysts.


  • loading
  • [1]
    KHAN S U, AL-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245. doi: 10.1126/science.1075035
    ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271. doi: 10.1126/science.1061051
    GAO C, WEI T, ZHANG Y, et al. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials,2019,31(8):e1806596. doi: 10.1002/adma.201806596
    YANG Y, ZHANG Y, FANG Z, et al. Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology[J]. ACS Applied Materials & Interfaces,2017,9(8):6950-6958.
    ZHANG J, WANG Y, JIN J, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires[J]. ACS Applied Materials & Interfaces,2013,5(20):10317-10324.
    ZHONG Y, SHAO Y, MA F, et al. Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting[J]. Nano Energy,2017,31:84-89. doi: 10.1016/j.nanoen.2016.11.011
    WANG Z L. Piezotronic and piezophototronic effects[J]. The Journal of Physical Chemistry Letters,2010,1(9):1388-1393. doi: 10.1021/jz100330j
    KUMAR D, SHARMA S, KHARE N. Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity[J]. Renewable Energy,2021,163:1569-1579. doi: 10.1016/j.renene.2020.09.132
    ZHANG S C, ZHANG B, CHEN D, et al. Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system[J]. Nano Energy,2021,79:105485. doi: 10.1016/j.nanoen.2020.105485
    SINGH S, KHARE N. Flexible PVDF/Cu/PVDF-NaNbO3 photoanode with ferroelectric properties: An efficient tuning of photoelectrochemical water splitting with electric field polarization and piezophototronic effect[J]. Nano Energy,2017,42:173-180. doi: 10.1016/j.nanoen.2017.10.061
    XU H, LIU C T, LI H M, et al. Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts[J]. Journal of Alloys and Compounds,2011,509(37):9157-9163. doi: 10.1016/j.jallcom.2011.06.100
    JI S Z, LIU H, SANG Y H, et al. Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures[J]. Crystengcomm,2014,16(32):7598-7604. doi: 10.1039/C4CE01116C
    SINGH S, KHARE N. Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst[J]. Nano Energy,2017,38:335-341. doi: 10.1016/j.nanoen.2017.05.029
    鲁浈浈, 张琪, 栗思琪. CdS-石墨相氮化碳复合光催化剂的制备及其光催化性能[J]. 复合材料学报, 2020, 37(3):662-673.

    LU Z Z, ZHANG Q, LI S Q. Preparation and photocatalytic performance of CdS-graphite phase carbon nitride composite photocatalyst[J]. Acta Materiae Compositae Sinica,2020,37(3):662-673(in Chinese).
    孙志明, 李雪, 马建宁, 等. 类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2018, 35(6):1558-1565.

    SUN Z M, LI X, MA J N, et al. Preparation of g-C3N4/illite composite and its visible-light-driven photocatalytic activity[J]. Acta Materiae Compositae Sinica,2018,35(6):1558-1565(in Chinese).
    刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2):628-636.

    LIU Q F, PENG W D, ZHONG C W, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica,2022,39(2):628-636(in Chinese).
    吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2022, 40(1):323-333.

    WU J B, SHI L, ZHENG X Q, et al. g-C3N4/BiOCl composite photocatalyst was used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compo-sitae Sinica,2022,40(1):323-333(in Chinese).
    ZHANG D D, QI J J, JI H D, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chemical Engineering Journal,2020,400:125918. doi: 10.1016/j.cej.2020.125918
    YOU H L, MA X X, WU Z, et al. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-Bi-catalytic dye decomposition of NaNbO3 nanofibers[J]. Nano Energy,2018,52:351-359. doi: 10.1016/j.nanoen.2018.08.004
    YAN L, ZHANG T, LEI W, et al. Catalytic activity of gold nanoparticles supported on KNbO3 microcubes[J]. Catal Today,2014,224:140-146. doi: 10.1016/j.cattod.2013.11.033
    WEI Z, ENDO M, WANG K, et al. Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants[J]. Chemical Engineering Journal,2017,318:121-134. doi: 10.1016/j.cej.2016.05.138
    RADHA R, KUMAR Y R, SAKAR M, et al. Understanding the lattice composition directed in situ structural disorder for enhanced visible light photocatalytic activity in bismuth iron niobate pyrochlore[J]. Applied Catalysis B: Environmental,2018,225:386-396. doi: 10.1016/j.apcatb.2017.12.004
    XUE J, MA S, ZHOU Y, et al. Facile photochemical synthe-sis of Au/Pt/g-C3N4 with plasmon-enhanced photocataly-tic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces,2015,7(18):9630-9637.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (589) PDF downloads(34) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint