Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHOU Zheng, XIE Minghui, WANG Yanqing. Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003
Citation: ZHOU Zheng, XIE Minghui, WANG Yanqing. Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 407-418. doi: 10.13801/j.cnki.fhclxb.20220414.003

Distribution state of reinforcement phase at the interface between layers in the fused deposition modeling of PLA based biocomposite filaments

doi: 10.13801/j.cnki.fhclxb.20220414.003
Funds:  Fundamental Research Funds for the Central Universities of China University of Mining and Technology (2020ZDPYMS36)
  • Received Date: 2022-02-11
  • Accepted Date: 2022-04-05
  • Rev Recd Date: 2022-03-19
  • Available Online: 2022-04-15
  • Publish Date: 2023-01-15
  • The interlayer interface was unavoidable in 3D parts additive manufactured by fused deposition modeling. Aiming at the enhancement of the interlayer interface, the poly (lactic acid) (PLA) based biocomposite filaments were formerly prepared by the ultrasonic impregnating. In the PLA based biocomposite filament, nano-hydroxyapatite (n-HA) and micron chopped carbon fiber (CF) were firmly bonded and uniformly distributed on the surface of the PLA filament, and they were reserved as reinforcement phases for interlayer interface after being fused. However, after fused deposition modeling, the distribution state of above two reinforcement phases was particularly critical, and it was closely decided by the melting fluid velocity of the nozzle outlet. The influence of three key factors of nozzle diameter, filament feeding speed and micron chopped CF content on the melting fluid velocity of the nozzle outlet was studied, with Ansys being used for fluid numerical calculations, Minitab being applied for orthogonal parameter design and signal-to-noise ratio data analysis, standard tensile samples being 3D printed for tensile performance characterization and distribution state observation of above two reinforcement phases. The results show that the optimization of experimental parameters with Minitab signal-to-noise ratio is more effective than orthogonal experimental parameter design along. Since then, when the melting temperature is 210℃, the nozzle diameter is 0.5 mm, the filament feeding speed is 14 mm·s−1, and the micron chopped CF content is 7wt%, the melting fluid velocity of the nozzle outlet numerically owns the largest variance, which means the most uniform distribution of the above two reinforcement phases in the interlayer interface, and the sample experimentally obtains the strongest tensile properties.

     

  • loading
  • [1]
    薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能[J]. 复合材料学报, 2022, 39(7):3212-3223. doi: 10.13801/j.cnki.fhclxb.20210911.001

    XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica,2022,39(7):3212-3223(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210911.001
    [2]
    LIANG C, LIU G, LIANG G, et al. Healing pattern classification for thoracolumbar burst fractures after posterior short-segment fixation[J]. BMC Musculoskeletal Disorders,2020,21(1):1-10. doi: 10.1186/s12891-020-03386-z
    [3]
    WEI X, LIU P D, MA S J, et al. Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation[J]. Corrosion Science,2020,173:108729. doi: 10.1016/j.corsci.2020.108729
    [4]
    MANSOUR A, NADA L A, EI-HADAD A A, et al. Biomimetic trace metals improve bone regenerative properties of calcium phosphate bioceramics[J]. Journal of Biomedical Materials Research Part A,2021,109(5):666-681. doi: 10.1002/jbm.a.37051
    [5]
    禹宝庆, 施继飞, 敖荣广, 等. 生物降解高分子材料在骨科的应用研究和展望[J]. 生物骨科材料与临床研究, 2018, 15(5):69-72, 75. doi: 10.3969/j.issn.1672-5972.2018.05.018

    YU Baoqing, SHI Jifei, AO Rongguang, et al. The application and development of biodegradable high polymer materials in orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study,2018,15(5):69-72, 75(in Chinese). doi: 10.3969/j.issn.1672-5972.2018.05.018
    [6]
    ALI W, MEHBOOB A, HAN M G, et al. Effect of fluoride coating on degradation behaviour of unidirectional Mg/PLA biodegradable composite for load-bearing bone implant application[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105464. doi: 10.1016/j.compositesa.2019.05.032
    [7]
    王宪朋, 刘阳, 王传栋, 等. 静电纺丝法制备小口径胶原-聚乳酸人工血管[J]. 复合材料学报, 2017, 34(11):2550-2555. doi: 10.13801/j.cnki.fhclxb.20170220.005

    WANG Xianpeng, LIU Yang, WANG Chuandong, et al. Preparation of small-diameter collagen-polylactic acid artificial blood vessel by electrospinning[J]. Acta Materiae Compositae Sinica,2017,34(11):2550-2555(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170220.005
    [8]
    王震, 李敬洋, 张建超, 等. 熔融沉积制造材料的空间应用实验[J]. 宇航材料工艺, 2020, 50(2):90-93. doi: 10.12044/j.issn.1007-2330.2020.02.017

    WANG Zhen, LI Jingyang, ZHANG Jianchao, et al. Research on the space application of fused deposition modeling[J]. Aerospace Materials & Technology,2020,50(2):90-93(in Chinese). doi: 10.12044/j.issn.1007-2330.2020.02.017
    [9]
    AFROSE M F, MASOOD S H, IOVENITTI P, et al. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material[J]. Progress in Additive Manufacturing,2016,1(1):21-28. doi: 10.1007/s40964-015-0002-3
    [10]
    WANG L, GRAMLICH W M, GARDNER D J. Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM)[J]. Polymer,2017,114:242-248. doi: 10.1016/j.polymer.2017.03.011
    [11]
    CARLIER E, MARQUETTE S, PEERBOOM C, et al. Investigation of the parameters used in fused deposition modeling of poly(lactic acid) to optimize 3D printing sessions[J]. International Journal of Pharmaceutics,2019,565:367-377. doi: 10.1016/j.ijpharm.2019.05.008
    [12]
    LEVENHAGEN N P, DADMUN M D. Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples[J]. Polymer,2017,122:232-241. doi: 10.1016/j.polymer.2017.06.057
    [13]
    AMBONE T, TORRIS A, SHANMUGANATHAN K. Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose[J]. Polymer Engineering and Science,2020,60(8):1842-1855. doi: 10.1002/pen.25421
    [14]
    YU W W, ZHANG J, WU J R, et al. Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling[J]. Journal of Applied Polymer Science,2017,134(15):1-11. doi: 10.1002/app.44703
    [15]
    SANIEI H, MOUSAVI S. Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity[J]. Polymer,2020,196:122467. doi: 10.1016/j.polymer.2020.122467
    [16]
    LEE J, LEE H, CHEON K H, et al. Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)-based 3D printing[J]. Additive Manufacturing,2019,30:100883. doi: 10.1016/j.addma.2019.100883
    [17]
    SANTOS C, TURIEL S, GOMES P S, et al. Vascular biosafety of commercial hydroxyapatite particles: Discrepancy between blood compatibility assays and endothelial cell behavior[J]. Journal of Nanobiotechnology,2018,16:27. doi: 10.1186/s12951-018-0357-y
    [18]
    PERA F, PESCE P, SOLIMANO F, et al. Carbon fibre versus metal framework in full-arch immediate loading rehabilitations of the maxilla—A cohort clinical study[J]. Journal of Oral Rehabilitation,2017,44(5):392-397. doi: 10.1111/joor.12493
    [19]
    佘亚楠, 付烨, 朱钦睿, 等. 纸浆纤维/聚乳酸复合材料的力学和热学性能[J]. 复合材料学报, 2022, 39(10):4856-4867. doi: 10.13801/j.cnki.fhclxb.20211115.005

    SHE Yanan, FU Ye, ZHU Qinrui, et al. Mechanical and thermal properties of pulp fiber/polylactic acid composite[J]. Acta Materiae Compositae Sinica,2022,39(10):4856-4867(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211115.005
    [20]
    BERTEVAS E, FEREC J, KHOO B C, et al. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process[J]. Physics of Fluids,2018,30(10):103103. doi: 10.1063/1.5047088
    [21]
    WANG Y, FAN Z W, ZHANG H, et al. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance[J]. Materials & Design,2021,197:109222. doi: 10.1016/j.matdes.2020.109222
    [22]
    WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers,2020,12(7):1529. doi: 10.3390/polym12071529
    [23]
    KASEEM M, HAMAD K, YANG H W, et al. Melt rheology of poly(vinylidene fluoride) (PVDF)/low density polyethylene (LDPE) blends[J]. Polymer Science Series A,2015,57(2):233-238. doi: 10.1134/S0965545X15020054
    [24]
    ZDANSKI P S B, VAZ M, INACIO G R. A finite volume approach to simulation of polymer melt flow in channels[J]. Engineering Computation,2008,25(3-4):233-250.
    [25]
    TOH K C, CHEN X Y, CHAI J C. Numerical computation of fluid flow and heat transfer in microchannels[J]. International Journal of Heat and Mass Transfer,2002,45(26):5133-5141. doi: 10.1016/S0017-9310(02)00223-5
    [26]
    SERDECZNY M P, COMMINAL R, MOLLAH M T, et al. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing[J]. Additive Manufacturing,2020,36:101454. doi: 10.1016/j.addma.2020.101454
    [27]
    XIONG Q, YANG Y, XU F, et al. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):2783-2798. doi: 10.1021/acssuschemeng.6b02634
    [28]
    ERSHADNIA R, AMOOIE M A, SHAMS R, et al. Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling[J]. Journal of Petroleum Science and Engineering,2020,185:106641. doi: 10.1016/j.petrol.2019.106641
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article views (387) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return