Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
QIU Ge, CHEN Gang, WEI Yuan, et al. Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002
Citation: QIU Ge, CHEN Gang, WEI Yuan, et al. Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002

Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology

doi: 10.13801/j.cnki.fhclxb.20220414.002
Funds:  Natural Science Foundation of Guangdong Province (2021A1515010538); State Key Laboratory of Pulp and Paper Engineering (2020ZD02); National Key Research and Development Program (2018YFC1902102)
  • Received Date: 2022-02-28
  • Accepted Date: 2022-04-06
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-04-15
  • Publish Date: 2023-03-15
  • Recently, barrier packaging products made from biodegradable materials have attracted wide attention. However, most reported methods are still difficult to achieve both high oxygen barrier and water vapor resistance in paper-based packaging. In this study, high-barrier transparent paper-based materials was prepared based on coating technology, where homemade transparent paper served as a substrate, while the natural biomass materials (starch and guar gum) and environmental-friendly waterborne resin functioned as coatings. The results show that the barrier effect between different coatings is fully utilized, which reduces the adsorption of external water vapor on the surface of paper-based materials, and increases the difficulty of diffusion of water molecules and oxygen molecules inside the paper. The oxygen transmission rate and water vapor transmission rate of our resulting transparent paper-based materials are low to 2.46 cm3/(m2·day·0.1 MPa) and 107.09 g/(m2·day), respectively, which show a significant reduction of 92% and 94% compared to the uncoated transparent paper. Meanwhile, the surface water absorption of paper and board (Cobb) values of transparent paper-based materials with waterproof layer are less than 1 g/m2, and the contact angles are greater than 90°, showing good hydrophobicity and water resisting property. In short, we provided a simple and low-cost technical route to manufacture performance-adjustable paper, suggesting a great potential to achieve industrialization and partially replace plastic packaging.


  • loading
  • [1]
    宋岩. 国家发展改革委就《“十四五”塑料污染治理行动方案》答记者问[EB/OL]. 2021[2021-12-20]. http://www.gov.cn/zhengce/2021-09/16/content _5637607.htm.

    SONG Yan. The national development and reform commission answered reporters' questions on the Action Plan for Plastic Pollution Control in the 14th Five-Year Plan[EB/OL]. 2021[2021-12-20]. http://www.gov.cn/zhengce/2021-09/16/content _5637607.htm(in Chinese).
    何北海, 张美云. 造纸原理与工程[M]. 北京: 中国轻工业出版社, 2017.

    HE Beihai, ZHANG Meiyun. Papermaking principles and engineering[M]. Beijing: China Light Industry Press, 2017(in Chinese).
    郝晓秀, 周云令, 付春英, 等. 包装用淋膜纸的研究进展[C]//中国造纸学会第十八届学术年会论文集, 2018: 202-207.

    HAO Xiaoxiu, ZHOU Yunling, FU Chunying, et al. Research progress on the packaging of film paper[C]//China Paper Society's 18th Annual Conference Paper Collection, 2018: 202-207(in Chinese).
    吴新磊, 景宜. 壳聚糖-蒙脱土与壳聚糖-高岭土纳米复合涂料流变性及其对纸张阻隔性能的影响[J]. 中国造纸学报, 2016, 31(2):1-6.

    WU Xinlei, JING Yi. Rheology of chitosan-mont morillonite and chitosan-kaolin nanocomposite coatings and the effects on paper barrier properties[J]. Transactions of China Pulp and Paper,2016,31(2):1-6(in Chinese).
    李梓源, 张金柱, 王鹏辉, 等. 改性纤维素纳米纤丝涂布制备高阻隔长纤维薄页纸的研究[J]. 中国造纸, 2020, 39(11): 10-17.

    LI Ziyuan, ZHANG Jinzhu, WANG Penghui, et al. Study on the preparation of high barrier long fiber thin paper by modified cellulose nanofiber silk coating[J]. China Pulp & Paper, 2020, 39(11): 10-17(in Chinese).
    TYAGI P, HUBBE M A, LUCIA L, et al. High performance nanocellulose-based composite coatings for oil and grease resistance[J]. Cellulose,2018,25(6):3377-3391. doi: 10.1007/s10570-018-1810-7
    TAYEB A H, TAJVIDI M, BOUSFIELD D. Paper-based oil barrier packaging using lignin-containing cellulose nano-fibrils[J]. Molecules,2020,25(6):1344. doi: 10.3390/molecules25061344
    BIDEAU B, BRAS J, ADOUI N, et al. Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization[J]. Food Packaging and Shelf Life,2017,12:1-8. doi: 10.1016/j.fpsl.2017.01.007
    SAINI A, SHARMA D, XIA Y, et al. Layer-by-layer assembly of cationic guar gum, cellulose nanocrystals and hydroxypropyl methylcellulose based multilayered compo-site films[J]. Cellulose,2021(13):8445-8457.
    LIU S Y, LI X X, CHEN L, et al. Investigating the H2O/O2 selective permeability from a view of multi-scale structure of starch/SiO2 nanocomposites[J]. Carbohydrate Polymers,2017,173:143-149.
    ZHANG D, CHEN L, CAI J, et al. Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties[J]. Food Chemistry,2021,360(4):129922.
    刘扬眉, 向斌, 操恺. 食品包装淀粉基生物降解薄膜阻氧性研究[J]. 中国包装, 2014, 34(11):51-52. doi: 10.3969/j.issn.1003-062X.2014.11.022

    LIU Yangmei, XIANG Bin, CAO Kai. Study on the oxygen resistance of food packaging starch-based biodegradable films[J]. China Packaging,2014,34(11):51-52(in Chinese). doi: 10.3969/j.issn.1003-062X.2014.11.022
    ALMASI H, GHANBARZADEH B, ENTEZAMI A. Physicochemical properties of starch-CMC-nanoclay biodegradable films[J]. International Journal of Biological Macromolecules,2010,46(1):1-5. doi: 10.1016/j.ijbiomac.2009.10.001
    ZAHIRUDDIN S M M, OTHMAN S H, TAWAKKAL I S M A, et al. Mechanical and thermal properties of tapioca starch films plasticized with glycerol and sorbitol[J]. Food Research,2018,3(2):160-166.
    OTHMAN S H, NORDIN N, AZMAN N, et al. Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films[J]. International Journal of Biological Macromolecules,2021,183(3):1352-1361.
    PATIL N V, NETRAVALI A N. Nonedible starch based “green” thermoset resin obtained via esterification using a green catalyst[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1756-1764.
    中华人民共和国国家质量监督检验检疫总局. 纸和纸板吸水性的测定 可勃法: GB/T 1540—2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Paper and board—Determination of water absorption-Cobb method: GB/T 1540—2002[S]. Beijing: Standards Press of China, 2002(in Chinese).
    中华人民共和国化学工业部. 塑料薄膜和片材透水蒸气性试验方法(杯式法): GB/T 1037—1988[S]. 北京: 中国标准出版社, 1988.

    Ministry of Chemical Industry of the People's Republic of China. Test method for water vapor transmission of plastic film and sheet-Cup method: GB/T 1037—1988[S]. Beijing: Standards Press of China, 1988(in Chinese).
    国家质量技术监督局. 塑料薄膜和薄片气体透过性试验方法(压差法): GB/T 1038—2000[S]. 北京: 中国标准出版社, 2000.

    State Administration of Quality and Technical Supervision. Plastics-Film and sheeting-Determination of gas transmission-Differential-Pressure method: GB/T 1038—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    中华人民共和国国家质量监督检验验疫总局. 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of the luminous transmittance and haze of transparent plastics: GB/T 2410—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    HE D B, LI L H, LI Q, et al. Synergistic interaction and gelation in cationic guar gum-sodium alginate system[J]. Wuhan University Journal of Natural Ences,2004,9(3):371-374. doi: 10.1007/BF02907896
    NI Y H, AN X Y, et al. Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation[J]. Carbohydrate Polymers,2017,169:9-15. doi: 10.1016/j.carbpol.2017.03.096
    祝爱萍, 麦伟明, 林锡康. 几种食品包装用塑料膜阻透性能比较[J]. 包装工程, 2018, 39(1):74-78.

    ZHU Aiping, MAI Weiming, LIN Xikang. Comparison of the resistance properties of plastic film for several food packagings[J]. Packaging Engineering,2018,39(1):74-78(in Chinese).
    SU Y, BO Y, LIU J, et al. Prospects for replacement of some plastics in packaging with lignocellulose materials: A brief review[J]. Bioresources,2018,13(2):4550-4576.
    DAI L, LONG Z, CHEN J, et al. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties[J]. ACS Applied Materials& Interfaces,2017,9(6):5477-5485.
    WANG W, GU F, DENG Z, et al. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging[J]. Carbohydrate Polymers,2020,255(4):117431.
    MIANEHROW H, RE G L, CAROSIO F, et al. Strong reinforcement effects in 2D cellulose nanofibril-graphene oxide (CNF-GO) nanocomposites due to GO-induced CNF ordering[J]. Journal of Materials Chemistry A,2020,8(34):17608-17620. doi: 10.1039/D0TA04406G
    王飞. 淀粉基生物降解包装膜阻隔性验证测试[J]. 中国包装, 2011(11):32-34. doi: 10.3969/j.issn.1003-062X.2011.11.009

    WANG Fei. Barrier verification test of starch-based biodegradable packaging film[J]. China Packaging,2011(11):32-34(in Chinese). doi: 10.3969/j.issn.1003-062X.2011.11.009
    LEI C F, WEI Y, QIAN Y Y, et al. Large-scale manufacture of recyclable bioplastics from renewable cellulosic biomass derived from softwood kraft pulp[J]. ACS Applied Polymer Materials,2022,4(2):1334-1343. doi: 10.1021/acsapm.1c01729
    TAUNK K, BEHARI K. Graft copolymerization of acrylic acid onto guar gum[J]. Journal of Applied Polymer Science,2000,79:39-44.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (355) PDF downloads(39) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint