Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHAO Junjie, TAO Wenwu, ZENG Lijian, et al. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 753-760. doi: 10.13801/j.cnki.fhclxb.20220412.003
Citation: ZHAO Junjie, TAO Wenwu, ZENG Lijian, et al. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 753-760. doi: 10.13801/j.cnki.fhclxb.20220412.003

Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive

doi: 10.13801/j.cnki.fhclxb.20220412.003
Funds:  Fundamental Research Funds for the Central Universities (2019kfyXJJS060)
  • Received Date: 2022-01-25
  • Accepted Date: 2022-04-04
  • Rev Recd Date: 2022-03-31
  • Available Online: 2022-04-13
  • Publish Date: 2023-02-15
  • Carbon nanotube (CNT)/epoxy resin can be widely used to bond advanced structural parts in the aerospace field due to its excellent mechanical and bonding properties. However, how to effectively reduce the agglomeration of carbon nanotubes and ensure low cost and environmental protection of the preparation process is the key to the practical application of the nano-binder. Therefore, this paper proposes a protein dispersed carbon nanotube reinforced epoxy resin adhesive and investigates its bonding performance. The results show that the soy protein isolate (SPI) after a certain acid or alkali denaturation treatment can effectively reduce the agglomeration of carbon nanotubes and significantly improve the bonding performance of epoxy resin. When the CNT loading is 0.1wt%, the bonding property of acid and alkali treated SPI-CNT/epoxy is increased by 26.6% and 26.7%. While the CNT loading increases to 0.3wt%, the bonding property enhancement of the two treated methods comes to 10.2% and 18.3%, the alkali method is 79% higher than the acid one.

     

  • loading
  • [1]
    YUDHANTO A, ALFANO M, LUBINEAU G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Applied Science and Manufacturing,2021,147:106443. doi: 10.1016/j.compositesa.2021.106443
    [2]
    AMITKUMAR R, ASOKAN R, JHANJI K P, et al. Investigation of tensile properties of carbon/epoxy composite joints with and without carbon nanotubes[J]. International Journal of Vehicle Structures Systems,2019,11(2):209-213.
    [3]
    KAHRAMAN R, AL-HARTHI M. Moisture diffusion into aluminum powder-filled epoxy adhesive in sodium chloride solutions[J]. International Journal of Adhesion and Adhesives,2005,25(4):337-341. doi: 10.1016/j.ijadhadh.2004.10.003
    [4]
    ALIAKBARI M, JAZANI O M, SOHRABIAN M, et al. Multi-nationality epoxy adhesives on trial for future nanocomposite developments[J]. Progress in Organic Coatings,2019,133:376-386. doi: 10.1016/j.porgcoat.2019.04.076
    [5]
    HAO B, MU L, MA Q, et al. Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks[J]. Composites Science and Technology,2018,163:162-170. doi: 10.1016/j.compscitech.2018.05.017
    [6]
    GONG S, WU D, LI Y, et al. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite[J]. Carbon,2018,137:188-195. doi: 10.1016/j.carbon.2018.05.029
    [7]
    朱劲, 单人为, 李琴, 等. 几种常规改性方法对大豆分离蛋白化学结构的影响[J]. 浙江林业科技, 2014(2): 5-8.

    ZHU Jin, SHAN Renwei, LI Qin, et al. Effect of conventional modification methods on chemical structure of soybean protein[J]. Journal of Zhejiang Forestry Science and Technology, 2014(2): 5-8(in Chinese).
    [8]
    CHEN J J, YAN L F, SONG W Y. Interfacial characteristics of carbon nanotube-polymer composites: A review[J]. Applied Science and Manufacturing,2018,114:149-169. doi: 10.1016/j.compositesa.2018.08.021
    [9]
    ATA M S, POON R, SYED A M, et al. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes[J]. Carbon,2018,130:584-598. doi: 10.1016/j.carbon.2018.01.066
    [10]
    KUMAR P, SENGUPTA A, DEB A K S, et al. Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent F-elements: A comparison between 1st and 2nd generation[J]. Chemitry Select,2017,2(3):975-985. doi: 10.1002/slct.201601550
    [11]
    ZHU J, KIM J D, PENG H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters,2003,3(8):1107-1113. doi: 10.1021/nl0342489
    [12]
    LI C C, LIN J L, HUANG S J. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,297(1-3):275-281.
    [13]
    MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003
    [14]
    MADNI I, HWANG C Y, PARK S D, et al. Mixed surfactant system for stable suspension of multiwalled carbon nano-tubes[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2010,358(1-3):101-107. doi: 10.1016/j.colsurfa.2010.01.030
    [15]
    HASHIM P K, BERGUEIRO J, MEIJER E W, et al. Supramolecular polymerization: A conceptual expansion for innovative materials[J]. Progress in Polymer Science,2020,105:101250. doi: 10.1016/j.progpolymsci.2020.101250
    [16]
    GHOSH A, RAO K V, VOGGU R, et al. Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules[J]. Chemical Physics Letters,2010,488(4-6):198-201. doi: 10.1016/j.cplett.2010.02.021
    [17]
    PIAO L, LIU Q, LI Y, et al. Adsorption of L-phenylalanine on single-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2008,112(8):2857-2863. doi: 10.1021/jp077047s
    [18]
    WANG Z, CHEN Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes[J]. Macromolecules,2007,40(9):3402-3407. doi: 10.1021/ma0702593
    [19]
    KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science,2018,362(6414):547-553. doi: 10.1126/science.aat7439
    [20]
    SUBRAMANIAN A S, TEY J N, ZHANG L Y, et al. Synergistic bond strengthening in epoxy adhesives using polydopa-mine/MWCNT hybrids[J]. Polymer, 2016, 82: 285-294.
    [21]
    GHOSH P K, PATEL A, KUMAR K. Adhesive joining of copper using nanofiller composite adhesive[J]. Polymer,2016,87:159-169. doi: 10.1016/j.polymer.2016.02.006
    [22]
    LEE J, KIM J. Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106897.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (842) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return