Citation: | ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002 |
[1] |
XU B, GOGOTSI Y. MXenes: From discovery to applications[J]. Advanced Functional Materials,2020,30(47):2007011. doi: 10.1002/adfm.202007011
|
[2] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):1-17.
|
[3] |
VERGER L, NATU V, CAREY M, et al. MXenes: An introduction of their synthesis, select properties, and applications[J]. Trends in Chemistry,2019,1(7):656-669. doi: 10.1016/j.trechm.2019.04.006
|
[4] |
刘俊杰, 杨雯杰, 杨伟, 等. MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用[J]. 复合材料学报, 2021, 38(8):2404-2417.
LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2021,38(8):2404-2417(in Chinese).
|
[5] |
曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091.
ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese).
|
[6] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
|
[7] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
|
[8] |
SHAO Y, EL-KADY M F, SUN J, et al. Design and mecha-nisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
|
[9] |
HUI X, GE X, ZHAO R, et al. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials,2020,30(50):2005190. doi: 10.1002/adfm.202005190
|
[10] |
BAI Y, LIU C, CHEN T, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors[J]. Angwandte Chemie International Edition,2021,60:25318-25322. doi: 10.1002/anie.202112381
|
[11] |
SHAHZAD F, IQBAL A, HYERIM K, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32:2002159. doi: 10.1002/adma.202002159
|
[12] |
GUO Y, QI J, JIANG Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics,2003,80(3):704-709. doi: 10.1016/S0254-0584(03)00105-6
|
[13] |
TEO E Y L, MUNIANDY L, NG E P, et al. High surface area activated carbon from rice husk as a high-performance supercapacitor electrode[J]. Electrochimica Acta,2016,192:110-119. doi: 10.1016/j.electacta.2016.01.140
|
[14] |
ZHANG C, MA Y, ZHANG X, et al. Two-dimensional transition metal carbides and nitrides (MXene): Synthesis, properties, and electrochemical energy storage application[J]. Energy & Environmental Materials,2020,3(1):29-55.
|
[15] |
HU M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A
|
[16] |
FANG R, LU C, CHEN A, et al. 2D MXene-based energy storage materials: Interfacial structure design and functionalization[J]. ChemSusChem,2019,13(6):1409-1419.
|
[17] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-diomensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
|
[18] |
SRIVASTAVA P, MISHRA A, MIZUSEKI H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
|
[19] |
WANG X, SHEN X, GAO Y, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society,2015,137(7):2715-2721. doi: 10.1021/ja512820k
|
[20] |
ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXene)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
|
[21] |
ANASORI B, SHI C, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons,2016,1(3):227-234. doi: 10.1039/C5NH00125K
|
[22] |
LI Y, DENG Y, ZHANG J, et al. ConTunable energy storage capacity of two-dimensional Ti3C2TX modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes[J]. Nanoscale,2019,11(45):21981-21989. doi: 10.1039/C9NR07259D
|
[23] |
HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials,2016,26(18):3118-3127. doi: 10.1002/adfm.201505328
|
[24] |
SHE Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters,2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247
|
[25] |
PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
|
[26] |
ZHANG X, LIU Y, DONG S, et al. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance[J]. Electrochimica Acta,2019,294:233-239. doi: 10.1016/j.electacta.2018.10.096
|
[27] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2TX (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. doi: 10.1002/anie.201800887
|
[28] |
LI J, YUAN X T, LIN C, et al. Achieving high pseudo capacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725
|
[29] |
SUN W, SHAH S, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTX (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A,2017,5(41):21663-21668. doi: 10.1039/C7TA05574A
|
[30] |
PANG S Y, WONG Y T, YUAN S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society,2019,141(24):9610-9616. doi: 10.1021/jacs.9b02578
|
[31] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
|
[32] |
XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin MO2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141. doi: 10.1038/nmat4374
|
[33] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
|
[34] |
SHPIGEL N, LEVI M D, SIGALOV S, et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique[J]. Journal of the American Chemical Society,2018,140(28):8910-8917. doi: 10.1021/jacs.8b04862
|
[35] |
OKUBO M, SUGAHARA A, KAJIYAMA S, et al. MXene as a charge storage host[J]. Accounts of Chemical Research,2018,51(3):591-599. doi: 10.1021/acs.accounts.7b00481
|
[36] |
LEVI M D, LUKATSKAYA M R, SIGALOV S, et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials,2015,5(1):1400815. doi: 10.1002/aenm.201400815
|
[37] |
SUGAHARA A, ANDO Y, KAJIYAMA S, et al. Negative dielectric constant of water confined in nanosheets[J]. Nature Communications,2019,10(1):1-7. doi: 10.1038/s41467-018-07882-8
|
[38] |
ZHENG L, HUA Q, LI X, et al. Investigation on the effect of Nb doping on the oxidation mechanism of Ti3SiC2[J]. Corrosion Science,2018,140(1):374-378. doi: 10.1016/j.corsci.2018.05.028
|
[39] |
ZANG X, WANG J, QIN Y, et al. Enhancing capacitance performance of Ti3C2TX Mxene as electrode materials of supercapacitor: From controlled preparation to composite structure construction[J]. Nano-Micro Letters,2020,12(1):1-24. doi: 10.1007/s40820-019-0337-2
|
[40] |
LI L, WEN J, ZHANG X. Progress of two-dimensional Ti3C2TX in supercapacitors[J]. ChemSusChem,2020,13(6):1296-1329. doi: 10.1002/cssc.201902679
|
[41] |
LUO J, MATIOS E, WANG H, et al. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion[J]. InfoMat,2020,2(6):1057-1076. doi: 10.1002/inf2.12118
|
[42] |
DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2TX MXene initiated by metal ion[J]. Advanced Materials,2019,31(43):1902432. doi: 10.1002/adma.201902432
|
[43] |
ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(6):1802040. doi: 10.1002/admi.201802040
|
[44] |
ZHANG P, ZHU Q, RAZIUM A, et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors[J]. Advanced Functional Materials,2020,30:2000922. doi: 10.1002/adfm.202000922
|
[45] |
ZHAO M Q, XIE X, REN C E, et al. Hollow MXene spheres and 3D microporous MXene frameworks for Na-ion storage[J]. Advanced Materials,2017,29(37):1702410. doi: 10.1002/adma.201702410
|
[46] |
TANG J, HUANG X, QIU T, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications[J]. Chemistry—A European Journal, 2021, 27(6): 1921-1940.
|
[47] |
GAO L, BAO W, ARTEM V K, et al. Hetero-MXenes: Theory, synthesis, and emerging applications[J]. Advanced Materials,2021,33:2004129. doi: 10.1002/adma.202004129
|
[48] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
|
[49] |
MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4(1):1-7.
|
[50] |
GHIDIU M, KOTA S, HALIM J, et al. Alkylammonium cation intercalation into Ti3C2(MXene): Effects on properties and ion-exchange capacity estimation[J]. Chemistry of Materials,2017,29(3):1099-1106. doi: 10.1021/acs.chemmater.6b04234
|
[51] |
LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191:33-40. doi: 10.1016/j.mseb.2014.10.009
|
[52] |
LUO J, ZHENG J, NAI J, et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance[J]. Advanced Functional Materials,2019,29(10):1808107. doi: 10.1002/adfm.201808107
|
[53] |
WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2TX MXene electrodes for high-performance supercapacitors[J]. Nano Energy,2017,38:368-376. doi: 10.1016/j.nanoen.2017.06.009
|
[54] |
ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Functional Materials,2015,27(2):339-345. doi: 10.1002/adma.201404140
|
[55] |
李学林. 二维Ti3C2TX基复合材料的改性及其超级电容器性能研究[D]. 西安: 陕西科技大学, 2021.
LI Xuelin. Study on modification of two-dimensional Ti3C2TX-based composites and their supercapacitor pro-perties[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese).
|
[56] |
LE T A, TRAN N Q, HONG Y, et al. Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances[J]. Chemistry-A European Journal,2019,25(4):1037-1043.
|
[57] |
黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641.
HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese).
|
[58] |
崔丽华, 王岩, 舒霞, 等. MnO2/TiO2复合物电极的制备及超级电容性能[J]. 复合材料学报, 2016, 33(8):1794-1802.
CUI Lihua, WANG Yan, SHU Xia, et al. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J]. Acta Materiae Compositae Sinica,2016,33(8):1794-1802(in Chinese).
|