Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Riyuan, CHEN Haoran, CHEN Fanglin, et al. Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1494-1500. doi: 10.13801/j.cnki.fhclxb.20220410.001
Citation: WANG Riyuan, CHEN Haoran, CHEN Fanglin, et al. Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1494-1500. doi: 10.13801/j.cnki.fhclxb.20220410.001

Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator

doi: 10.13801/j.cnki.fhclxb.20220410.001
  • Received Date: 2022-03-11
  • Accepted Date: 2022-03-26
  • Rev Recd Date: 2022-03-26
  • Available Online: 2022-04-12
  • Publish Date: 2023-03-15
  • It is one of the important ways to produce fresh water through solar-driven evaporator. In order to improve the solar-driven evaporation performance of polyimide (PI) aerogel, PDA@BN-CNT/PI composite aerogel was prepared by adding dopamine-modified boron nitride (PDA@BN) and hydroxylated carbon nanotubes (CNT) through four-directional freeze-drying and imidization. The influence of PDA@BN and CNT on the morphology, structure, wettability and solar-driven evaporation of the aerogel were studied. The results indicate that PDA@BN-CNT/PI aerogel has good hydrophilicity and solar photothermal conversion performance. Moreover, it exhibits unique low bending tubular structure, which is conducive to promoting the transportation of water inside the aerogel and improving the performance of solar-driven evaporator. The aerogel exhibits high evaporation rate of 1.95 kg/(m2·h) under 2 kW/m2 sun irradiation and excellent recycling performance, chemical stability and efficient wastewater purification ability.


  • loading
  • [1]
    XIONG Z C, ZHU Y J, QIN D D, et al. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification[J]. Small,2018,14(50):1803387. doi: 10.1002/smll.201803387
    XIONG Z C, ZHU Y J, WANG Z Y, et al. Tree-inspired ultralong hydroxyapatite nanowires-based multifunctional aerogel with vertically aligned channels for continuous flow catalysis, water disinfection, and solar energy-driven water purification[J]. Advanced Functional Materials,2021,32(9):2106978.
    ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13:489-495. doi: 10.1038/s41565-018-0097-z
    FENG J, BAI B, YANG L, et al. Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation[J]. Materials Chemistry and Physics,2021,271:124904. doi: 10.1016/j.matchemphys.2021.124904
    李帅. 基于纤维素凝胶的太阳能水蒸发器的结构设计及其性能研究[D]. 桂林: 桂林理工大学, 2021.

    LI Shuai. Structure design and performance research of solar vapor generator based on cellulose gel[D]. Guilin: Guilin University of Technology, 2021(in Chinese).
    张超凡. 基于微纳米光热转换材料的高效太阳能水蒸发器件的设计与构筑[D]. 烟台: 鲁东大学, 2021.

    ZHANG Chaofan. Design and construction of high-efficient solar water evaporation device based on micro-nano photothermal conversion materials[D]. Yantai: Ludong University, 2021(in Chinese).
    苏丽芬, 常展鹏, 宁玉盈, 等. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18):18024-18029. doi: 10.11896/cldb.20070057

    SU Lifen, CHANG Zhanpeng, NING Yuying, et al. Flexible porous polydimethylsiloxane supported nano copper sulfide for efficient solar evaporation[J]. Materials Reports,2021,35(18):18024-18029(in Chinese). doi: 10.11896/cldb.20070057
    WEN B Y, ZHANG X Y, YAN Y H, et al. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation[J]. Desalination,2021,516:115228. doi: 10.1016/j.desal.2021.115228
    YANG Y, ZHAO R, ZHANG T, et al. Graphene-based standalone solar energy converter for water desalination and purification[J]. ACS Nano,2018,12(1):829-835. doi: 10.1021/acsnano.7b08196
    钟铠, 张弛, 仲亚, 等. 石墨烯气凝胶复合材料制备及吸附性能的研究进展[J]. 工业水处理, 2019, 39(6):1-6. doi: 10.11894/iwt.2018-1098

    ZHONG Kai, ZHANG Chi, ZHONG Ya, et al. Research progress in the preparation and adsorption capability of graphene aerogel composite materials[J]. Industrial Water Treatment,2019,39(6):1-6(in Chinese). doi: 10.11894/iwt.2018-1098
    WANG N N, WANG H, WANG Y Y, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces,2019,11(43):40512-40523.
    XU W, YUN X, LIU J, et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels[J]. ACS Nano,2019,13(7):7930-7938. doi: 10.1021/acsnano.9b02331
    YU Z C, WU P Y. Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation[J]. Advanced Materials Technologies,2020,5(6):2000065. doi: 10.1002/admt.202000065
    HE J X, FAN Y K, XIAO C H, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites Science and Technology,2021,204:108633. doi: 10.1016/j.compscitech.2020.108633
    XIE D, HE M, LI X R, et al. Tree-inspired efficient solar evaporation and simultaneous in-situ purification of ultra-highly concentrated mixed volatile organic wastewater[J]. Nano Energy,2022,93:106802. doi: 10.1016/j.nanoen.2021.106802
    WEI C J, ZHAG X H, MA S Y, et al. Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification[J]. Chemical Engineering Journal,2021,425:130118. doi: 10.1016/j.cej.2021.130118
    DONG X Y, SI Y, CHEN C J, et al. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination[J]. ACS Nano,2021,15(7):12256-12266. doi: 10.1021/acsnano.1c04035
    CHEN Y M, LI S J, LI X L, et al. Liquid transport and real-time dye purification via lotus petiole-inspired longrange-ordered anisotropic cellulose nanofibril aerogels[J]. ACS Nano,2021,15(12):20666-20677. doi: 10.1021/acsnano.1c10093
    JIA W, ZHOU L, JIANG M, et al. Fabrication of polyimide/graphene nanosheet composite fibers via microwave-assisted imidization strategy[J]. RSC Advance,2021,11(52):32647-32653. doi: 10.1039/D1RA05044C
    MIN C, LIU D, HE Z, et al. Novel polyimide nanocomposites enhanced by covalent modified graphene nanosheets based on friedel-crafts reaction[J]. Journal of Materials Science,2019,54:5484-5497. doi: 10.1007/s10853-018-03242-5
    YANG W, WANG N N, PING P, et al. Novel 3D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets[J]. ACS Applied Materials & Interfaces,2018,10(46):40032-40043.
    ROY A K, PARK B, LEE K S, et al. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine[J]. Nanotechnology,2014,25(44):445603. doi: 10.1088/0957-4484/25/44/445603
    CAI W, GUO W W, PAN J, et al. Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy compo-sites[J]. Composites Part A: Applied Science & Manufacturing,2018,111:94-105.
    秦盼亮, 谢璠, 张楠, 等. AF-PDA@h-BN二元纸基复合材料导热绝缘性能的研究[J]. 中国造纸, 2018, 37(11):7-11. doi: 10.11980/j.issn.0254-508X.2018.11.002

    QIN Panliang, XIE Fan, ZHANG Nan, et al. The study of thermal conductivity and insulation properties of AF-PDA@h-BN binary paper-based composite[J]. China Pulp & Paper,2018,37(11):7-11(in Chinese). doi: 10.11980/j.issn.0254-508X.2018.11.002
    BAI C, WANG F, ZHAO Z, et al. Mussel-inspired facile fabrication of dense hexagonal boron nitride nanosheet-based coatings for anticorrosion and antifriction applications[J]. Materials Today Nano,2021,15:100129. doi: 10.1016/j.mtnano.2021.100129
    中华人民共和国卫生部, 国家标准化委员会. 生活饮用水卫生标准: GB/T 5749—2006[S]. 北京: 卫生部法监司, 2006.

    Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB/T 5749—2006[S]. Beijing: Department of Health Law Enforcement and Supervision, 2006(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1097) PDF downloads(37) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint