Citation: | QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20220406.003 |
[1] |
WEN Z, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent[J]. Applied Surface Science,2019,486:546-554. doi: 10.1016/j.apsusc.2019.04.248
|
[2] |
DANIEL J E, KARYN J, ANDERS J B, et al. Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment[J]. Composites Part A: Applied Science and Manufacturing,2021,143:106319. doi: 10.1016/j.compositesa.2021.106319
|
[3] |
XIONG S, ZHAO Y, WANG Y, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface Science,2021,546:149135. doi: 10.1016/j.apsusc.2021.149135
|
[4] |
PAIVA M C, BERNARDO C A, NARDIN M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibers[J]. Carbon,2000,38(9):1323-1337. doi: 10.1016/S0008-6223(99)00266-3
|
[5] |
YU J, MENG L, FAN D, et al. The oxidation of carbon fibers through K2S2O8/ AgNO3 system that preserves fiber tensile strength[J]. Composites Part B: Engineering,2014,60:261-267. doi: 10.1016/j.compositesb.2013.12.037
|
[6] |
ZHANG L, KEIKO W. The influence of carboxyl group on nitrogen doping for defective carbon nanotubes toward oxygen reduction reaction[J]. Carbon,2022,189:369-376. doi: 10.1016/j.carbon.2021.12.087
|
[7] |
LOPEZ R O, SANCHEZ G R, SCHULZ J M E, et al. On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications[J]. International Journal of Hydrogen Energy,2017,42(5):30339-30348.
|
[8] |
FAN Y, ZHAO Z, ZHOU Q, et al. Nitrogen-doped carbon microfibers with porous textures[J]. Carbon,2013,58:128-133. doi: 10.1016/j.carbon.2013.02.040
|
[9] |
RODRIGUEZ-CORVERA C L, FAJARDO-DIAZ J L, CORTES-LOPEZ A J, et al. Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: Synthesis, characterization, and electrochemical activity[J]. Materials Today Chemistry,2019,14:100200. doi: 10.1016/j.mtchem.2019.100200
|
[10] |
PARK S J, KIM M H, LEE J R, et al. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites[J]. Journal of Colloid Interface Science,2000,228(2):287-291. doi: 10.1006/jcis.2000.6953
|
[11] |
PEERA S G, SAHU A K, ARUNCHANDER A, et al. Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells[J]. Carbon,2015,93:130-142. doi: 10.1016/j.carbon.2015.05.002
|
[12] |
MORITA T, TAKAMI N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion[J]. Electrochim Acta,2004,49(16):2591-2599. doi: 10.1016/j.electacta.2004.02.010
|
[13] |
LU T, LI Q, SHAO J, et al. Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,128:148-155. doi: 10.1016/j.jtice.2021.08.043
|
[14] |
MA T Y, RAN J, DAI S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angewandte Chemie-International Edition,2014,54(15):1-6.
|
[15] |
刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43.
LIU Fujie, WANG Haojing, FAN Lidong, et al. Analysis on the microstructure of MJ series carbon fiber[J]. New Chemical Materials,2009,37(1):41-43(in Chinese).
|
[16] |
张莎, 田艳红, 张学军. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3):1-8.
ZHANG Sha, TIAN Yanhong, ZHANG Xuejun, et al. Effect of electrochemical oxidation on the surface structure and mechanical performance of high strength and high modulus carbon fibres[J]. Acta Materiae Compositae Sinica,2012,29(3):1-8(in Chinese).
|
[17] |
乔伟静, 田艳红, 张学军. 国产聚丙烯腈基高强高模碳纤维电化学氧化表面处理工艺[J]. 复合材料学报, 2018, 35(9):2449-2457.
QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Electrochemical oxidation surface treatment of domestic polyacrylonitrile-based high strength and high modulus carbon fiber[J]. Acta Materiae Compositae Sinica,2018,35(9):2449-2457(in Chinese).
|
[18] |
KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214
|
[19] |
TIWARI S, BIJWE J. Surface treatment of carbon fibers-A review[J]. Procedia Technology,2014,14:505-512. doi: 10.1016/j.protcy.2014.08.064
|
[20] |
DONNET J B, GUILPAIN G. Surface treatments and properties of carbon fibers[J]. Carbon,1989,27(5):749-757. doi: 10.1016/0008-6223(89)90209-1
|
[21] |
BASOVA Y V, HATORI H, YAMADA Y, et al. Effect of oxidation–reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544. doi: 10.1016/S1388-2481(99)00112-5
|
[22] |
BISMARCK A, KUMRU M E, SPRINGER J, et al. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55. doi: 10.1016/S0169-4332(98)00929-5
|
[23] |
GEORGIOU P, WALTON J, SIMITZIS J. Surface modification of pyrolyzed carbon fibers by cyclic voltammetry and their characterization with XPS and dye adsorption[J]. Electrochimica Acta,2010,55(3):1207-1216. doi: 10.1016/j.electacta.2009.09.068
|
[24] |
RAHMANI H, ASHORI A, VARNASERI N. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix[J]. Polymers for Advanced Technologies,2016,27(6):805-811. doi: 10.1002/pat.3720
|
[25] |
LIU J, TIAN Y, CHEN Y, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141
|
[26] |
WANG Y Q, ZHANG F Q, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 25. Interfacial interactions between PEKK polymer and carbon fibers electrochemically oxidized in nitric acid and degradation in a saline solution[J]. Chemistry of Materials,2001,13(3):832-841. doi: 10.1021/cm000555t
|
[27] |
徐显亮, 张月义, 马全胜, 等. 国产PAN基高强中模型碳纤维的电化学表面改性研究[J]. 玻璃钢/复合材料, 2016(12):81-85.
XU Xianliang, ZHANG Yueyi, MA Quansheng, et al. Study on electrochemical surface modification of PAN-based carbon fiber of high strength and middle modulus[J]. Fibre Reinforced Plastics/Composites,2016(12):81-85(in Chinese).
|
[28] |
QIAN X. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Applied Surface Science, 2012, 259: 238-244.
|
[29] |
吴波, 郑帼, 孙玉, 等. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9):52-57.
WU Bo, ZHENG Guo, SUN Yu, et al. Surface properties of PAN-based carbon fibers modified by electrochemical oxidization in organic electrolyte systems[J]. Journal of Materials Engineering,2016,44(9):52-57(in Chinese).
|
[30] |
HAN F, DUAN D, JING W, et al. Synthesis and plasma treatment of nitrogen-doped graphene fibers for high-perfor-mance supercapacitors[J]. Ceramics International,2022,48(2):2058-2067. doi: 10.1016/j.ceramint.2021.09.291
|
[31] |
HOU X, HU Q, ZHANG P, et al. Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: A density functional theory study[J]. Chemical Physics Letters, 2016, 663: 123-127.
|
[32] |
ZENG K, WEI M H, LI C, et al. PPy-derived N, P co-doped hollow carbon fiber decorated with island-like Ni2P nanoparticles as bifunctional oxygen electrocatalysts[J]. Jour-nal of Electroanalytical Chemistry,2021,882:115013. doi: 10.1016/j.jelechem.2021.115013
|
[33] |
KIM Y J, LEE H J, LEE S W, et al. Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode[J]. Carbon,2005,43(1):163-169. doi: 10.1016/j.carbon.2004.09.001
|