Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
CHENG Aihua, CHANG Juan. Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001
Citation: CHENG Aihua, CHANG Juan. Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001

Preparation and its Cr(VI) adsorption properties of biomimetic FeS composites

doi: 10.13801/j.cnki.fhclxb.20220402.001
  • Received Date: 2022-01-12
  • Accepted Date: 2022-03-26
  • Rev Recd Date: 2022-03-21
  • Available Online: 2022-04-06
  • Publish Date: 2023-02-01
  • Nano FeS has excellent adsorption performance for Cr(VI) because of large specific surface area and strong reducibility, but it is unstable and prone to agglomeration. In order to overcome these disadvantages, the biomimetic FeS composites (bioFeS) were prepared by co-precipitation-roasting method using rape pollen as a biological template. The surface morphology and structure of bioFeS composites were characterized by SEM, XRD and XPS. The effects of adsorbent dosage, reaction time, reaction temperature, initial Cr(VI) concentration and pH on adsorption capacity of Cr(VI) on bioFeS composites were studied to investigate the reaction mechanism using Cr(VI) as the target pollutant. The results show that rape pollen biotemplate successfully disperse FeS with a large specific surface area. The adsorption capacity of Cr(VI) on bioFeS composites can reach 88.95 mg·g−1 at a reaction time of 120 min, pH of 1, adsorbent dosing of 0.2 g·L−1 and a reaction temperature of 25℃. The adsorption process conforms to quasi-secondary kinetics and the Langmuir isothermal adsorption model. The coexisting ions NO3 and SO42− will inhibit the adsorption capacity of Cr(VI). Combining with adsorption kinetics, thermodynamics and XPS surface element analysis, the mechanism of chromium removal by bioFeS composites mainly involves adsorption and chemical reduction. The method of removal of Cr(VI) in wastewater by bioFeS composites has a promising application.

     

  • loading
  • [1]
    LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites[J]. Chemical Engineering Journal,2021,405:126648. doi: 10.1016/j.cej.2020.126648
    [2]
    闫潇, 刘兴宇, 张明江, 等. 铬污染的微生物吸附技术研究进展[J]. 稀有金属, 2021, 45(2):240-250.

    YAN Xiao, LIU Xingyu, ZHANG Mingjiang, et al. Research progress in biosorption technology for chromium contamination[J]. Chinese Journal of Raremetals,2021,45(2):240-250(in Chinese).
    [3]
    狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231.

    DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(Ⅱ) and Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2021,38(1):221-231(in Chinese).
    [4]
    LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production,2020,257:120562. doi: 10.1016/j.jclepro.2020.120562
    [5]
    于艳杰, 吴莹, 方登志, 等. 曝气微电解混凝沉淀处理含砷铬废水[J]. 工业水处理, 2018, 38(2):82-84. doi: 10.11894/1005-829x.2018.38(2).082

    YU Yanjie, WU Ying, FANG Dengzhi, et al. Treatment of wastewater containing arsenic and chrome by aeration micro-electrolysis and coagulation-settlement process[J]. Industrial Water Treatment,2018,38(2):82-84(in Chinese). doi: 10.11894/1005-829x.2018.38(2).082
    [6]
    WU Z, YUAN X, ZENG G, et al. Highly effcient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium(VI) reduction and Rhodamine B oxydative degradation[J]. Applied Catalysis B,2020,225:8-21.
    [7]
    YAO Y, MI N, HE C, et al. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI)[J]. Separation and Purification Technology,2020,240:116623. doi: 10.1016/j.seppur.2020.116623
    [8]
    张华夏, 石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术, 2019, 45(4):37-42.

    ZHANG Huaxia, SHI Lin. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment,2019,45(4):37-42(in Chinese).
    [9]
    WU J, ZENG R J. In situ preparation of stabilized iron sulfide nanoparticle-impregnated alginate composite for selenite remedition[J]. Environmental Science and Technology,2018(52):6487-6496.
    [10]
    LYU H, TANG J, YAO H, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal,2017,322:516-524. doi: 10.1016/j.cej.2017.04.058
    [11]
    黄冠华, 刘序彦, 房晨曦, 等. 生物模板法制备磁性中空微球的方法和应用[J]. 化工进展, 2021, 40(5):2613-2623.

    HUANG Guanhua, LIU Xuyan, FANG Chenxi, et al. Methods and application of magnetic hollow microsphere prepared from bio-template[J]. Chemical Industry and Engi-neering Progress,2021,40(5):2613-2623(in Chinese).
    [12]
    毕磊, 潘纲. 微生物自模板法制备多孔中空微球及应用[J]. 科学通报, 2014, 59(25):2440-2451. doi: 10.1360/972014-00173

    BI Lei, PAN Gang. Preparation and application of hollow microspheres with porous shell via microorganism self-template method[J]. Chinese Science Bulletin,2014,59(25):2440-2451(in Chinese). doi: 10.1360/972014-00173
    [13]
    张竞. 以花粉为模板的锂空气电池多孔碳电极的制备及其性能研究[D]. 昆明: 昆明理工大学, 2016.

    ZHANG Jing. Preparation and performance of porous carbon electrode for Li-air battery using pollen as template[D]. Kunming: Kunming University of Science and Technology, 2016(in Chinese).
    [14]
    高雪, 刘宇彤, 王煜, 等. 生物模板法制备纳米氧化锌[J]. 化学通报, 2019, 82(1):63-67.

    GAO Xue, LIU Yutong, WANG Yu, et al. Preparation of zinc oxide nanomaterial by biotemplated method[J]. Che-mistry,2019,82(1):63-67(in Chinese).
    [15]
    段胜聪, 孟自珍, 解晶, 等. 基于油菜花粉模板制备ZnAlCe三元复合氧化物多孔材料及其催化性能研究[J]. 无机材料学报, 2015, 30(4):421-426.

    DUAN Shengcong, MENG Zizhen, XIE Jing, et al. Preparation and catalytic property of ZnAlCe ternary complex oxide porous materials based on rape pollen biotemplates[J]. Journal of Inorganic Materials,2015,30(4):421-426(in Chinese).
    [16]
    国家环境保护局规划标准处. 水质 六价铬的测定 二苯碳酰二肼分光光度法: GB/T 7467—1987[S]. 北京: 中国标准出版社, 1987.

    State Environmental Protection Agency. Water quality-Determination of hexavalent chromium diphenylcarbonyl hydrazine spectrophotometric method: GB/T 7467—1987[S]. Beijing: Standards Press of China,1987.
    [17]
    ZHANG H, LIANG P, CHEN A W, et al. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability[J]. Carbohydrate Polymers,2019,214:276-285. doi: 10.1016/j.carbpol.2019.03.056
    [18]
    DIPTIMA D, SHYAMAL K S. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)[J]. Journal of Hazardous Materials,2015,291:93-101. doi: 10.1016/j.jhazmat.2015.02.065
    [19]
    DI IORIO E, COLOMBO C, CHENG Z Q, et al. Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water[J]. Journal of Enviromental Chemical Engineering,2019,7(2):102986. doi: 10.1016/j.jece.2019.102986
    [20]
    LIANG Q, GENG J, LUO H, et al. Fast and selective removal of Cr(VI) from aqueous solutions by a novel magnetic Cr(VI) ion-imprinted polymer[J]. Journal of Molecular Liquids,2017,248:767-774. doi: 10.1016/j.molliq.2017.10.114
    [21]
    ZHANG L, FU F L, TANG B. Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites[J]. Chemical Engineering Journal,2019,356:151-160. doi: 10.1016/j.cej.2018.08.224
    [22]
    郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151.

    GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese).
    [23]
    SUN Z, LIU Y, HUANG Y, et al. Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber[J]. Journal of Colloid and Interface Science,2014,434:152-158. doi: 10.1016/j.jcis.2014.07.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (326) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return