Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
GAO Yang, XIAO Haibo, LIU Yong, et al. Effect of interfacial reaction on wear properties of Cu35Ni25Co25Cr15 multi-principal components alloy/diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1105-1117. doi: 10.13801/j.cnki.fhclxb.20220331.004
Citation: GAO Yang, XIAO Haibo, LIU Yong, et al. Effect of interfacial reaction on wear properties of Cu35Ni25Co25Cr15 multi-principal components alloy/diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1105-1117. doi: 10.13801/j.cnki.fhclxb.20220331.004

Effect of interfacial reaction on wear properties of Cu35Ni25Co25Cr15 multi-principal components alloy/diamond composites

doi: 10.13801/j.cnki.fhclxb.20220331.004
Funds:  National Key R&D Program of China (2021YFB3701800); National Natural Science Foundation of China (U20A20236)
  • Received Date: 2022-02-11
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-16
  • Available Online: 2022-04-02
  • Publish Date: 2023-02-15
  • Diamond superhard abrasive tools play an increasingly important role in high-end chips, 3C ceramics processing and other fields. The interface between binder phase and diamond greatly affects the mechanical and wear properties of diamond superhard composites. In order to study the interfacial bonding between binder phase and diamond, Cu35Ni25Co25Cr15 multi-principal components alloy/diamond composite was prepared by spark plasma sintering (SPS). The interfacial reaction between alloy binder phase and diamond particles was studied by thermodynamic calculation and experiments. The results show that chromium reacts with diamond at the interface to form Chromium carbides. Moreover, with the sintering temperature increasing, the thickness of Chromium carbides layer grows and the cohesion coefficient between the alloy binder phase and diamond increases. When sintering temperature reaches 950℃, the Chromium carbides layer is uniform and continuous, and the thickness is about 1.1 μm. The friction and wear tests show that on the surface of the composite sintered at 900℃ and 950℃, the alloy binder phase is removed firstly by the shear stress, and then the diamond particles expose. Due to the retention of the Chromium carbides layer, the grinding performance of the composites is improved effectively. Therefore, appropriate interfacial reaction improves the service properties of the diamond composites.


  • loading
  • [1]
    CHON K S, TAKAHASHI H, NAMBA Y. Wear inspection of a single-crystal diamond tool used in electroless nickel turning[J]. Optical Engineering,2014,53(3):034102. doi: 10.1117/1.OE.53.3.034102
    ZHAO X, LI J, DUAN L, et al. Effect of Fe-based pre-alloyed powder on the microstructure and holding strength of impregnated diamond bit matrix[J]. International Journal of Refractory Metals & Hard Materials,2019,79:115-122.
    LU C, FENG X, SHEN Y, et al. Wear resistance and thermal conductivity of diamond/Cu-Cr mechanical milled coatings after high temperature annealing[J]. Diamond and Related Materials,2019,97:107438. doi: 10.1016/j.diamond.2019.05.023
    KOBARU Y, KONDO E, IWAMOTO R. Ultra-precision cutting of single crystal silicon using diamond tool with large top corner radius[J]. Key Engineering Materials,2012,523:81-86.
    ZHANG Y, HAN T, XIAO M, et al. Tribological behavior of diamond reinforced FeNiCoCrTi0.5 carbonized high-entropy alloy coating[J]. Surface and Coatings Technology,2020,401:126233. doi: 10.1016/j.surfcoat.2020.126233
    TILLMANN W, FERREIRA M, STEFFEN A, et al. Carbon reactivity of binder metals in diamond-metal composites—Characterization by scanning electron microscopy and X-ray diffraction[J]. Diamond and Related Materials,2013,38:118-123. doi: 10.1016/j.diamond.2013.07.002
    KONSTANTY J. Powder metallurgy diamond tools–A review of manufacturing routes[J]. Materials Science Forum,2007,534-536:1121-1124.
    DUAN D, SUN L, FANG X, et al. Microstructure and processing performance of brazed diamond drill bits with Ni–Cr + Cu–Ce composite solder[J]. Diamond and Related Materials,2019,93:216-223. doi: 10.1016/j.diamond.2019.01.023
    DGL A, LIANG Z A, LI Z A, et al. Effect of W-coated diamond on the microstructure and thermal conductivity of diamond/W matrix composites for plasma-facing materials (PFMs)[J]. Fusion Engineering and Design,2019,144:141-147. doi: 10.1016/j.fusengdes.2019.05.005
    PING H, XIAO F R, ZOU W J, et al. Effect of different oxides addition on the thermal expansion coefficients and residual stresses of Fe-based diamond composites[J]. Ceramics International,2014,40(3):5007-5013. doi: 10.1016/j.ceramint.2013.08.080
    OLIVEIRA L J D, CABRAL S C, FILGUEIRA M. Study hot pressed Fe-diamond composites graphitization[J]. International Journal of Refractory Metals and Hard Materials,2012(35):228-234.
    JIE G A, HUI G A, SW B, et al. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2020, 87: 105144.
    MECHNIK V A, BONDARENKO N A, DUB S N, et al. A study of microstructure of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN metal matrix for diamond containing composites[J]. Materials Characterization,2018,146:209-216. doi: 10.1016/j.matchar.2018.10.002
    ZUO Q, WANG W, GU M S, et al. Thermal conductivity of the diamond-Cu composites with chromium addition[J]. Advanced Materials Research,2011,311-313:287-292. doi: 10.4028/www.scientific.net/AMR.311-313.287
    MA S, ZHAO N, SHI C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science,2017,402(Complete):372-383.
    YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science,2018,362(6417):933-937. doi: 10.1126/science.aas8815
    LI C W, CHANG K C, YEH A C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting[J]. Journal of Alloys and Compounds,2018,782:440-450.
    ZHANG W, ZHANG M Y, PENG Y B, et al. Interfacial structures and mechanical properties of a high entropy alloy-diamond composite[J]. International Journal of Refractory Metals and Hard Materials,2019,86:105-109.
    LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature,2016,534(7606):227-230. doi: 10.1038/nature17981
    LAPLANCHE G, BERGLUND S, REINHART C, et al. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys[J]. Acta Materialia,2018,161:338-351. doi: 10.1016/j.actamat.2018.09.040
    SHANG C, AXINTE E, SUN J, et al. CoCrFeNi(W1xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials & Design,2017,117(3):193-202.
    CHEN C S, YANG C C, CHAI H Y, et al. Novel cermet material of WC/multi-element alloy[J]. International Journal of Refractory Metals and Hard Materials,2014,43(12):200-204.
    CHEN J N P, WEI T, ET A L. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015,649:630-634.
    ZHANG W, ZHANG M, PENG Y, et al. Effect of Ti/Ni coating of diamond particles on microstructure and properties of high-entropy alloy/diamond composites[J]. Entropy,2019,21(2):164-174. doi: 10.3390/e21020164
    WANG H, ZHANG W, PENG Y, et al. Microstructures and wear resistance of FeCoCrNi-Mo high entropy alloy/diamond composite coatings by high speed laser cladding[J]. Coatings,2020,10(3):300-315. doi: 10.3390/coatings10030300
    中华人民共和国工业和信息化部. 聚晶金刚石磨耗比测定方法: JB/T 3235—2013[S]. 北京: 机械工业出版社, 2013.

    Ministry of Industry and Information Technology of the People's Republic of China. Testing method for abrasion ratio of polycrystalline diamond: JB/T 3235—2013[S]. Beijing: China Machine Press, 2013(in Chinese).
    叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 1980.

    YE Dalun, HU Jianhua. Practical inorganic thermodyna-mic data manual[M]. Beijing: Metallurgical Industry Press, 1980(in Chinese).
    LÜTTGE A. Crystal dissolution kinetics and Gibbs free energy[J]. Journal of Electron Spectroscopy and Related Phenomena,2006,150(2-3):248-259. doi: 10.1016/j.elspec.2005.06.007
    BUNDY F P, BOVENKERK H P, STRONG H M, et al. Diamond-graphite equilibrium line from growth and graphitization of diamond[J]. Journal of Chemical Physics,2004,35(2):383-391.
    朱瑞华, 刘金龙, 陈良贤. 金刚石自支撑膜拉曼光谱1420 cm-1特征峰研究[J]. 人工晶体学报, 2015, 44(4):6-12.

    ZHU Ruihua, LIU Jinlong, CHEN Liangxian. Research on 1420 cm-1 characteristic peak of free-standing diamond films in Raman spectrum[J]. Journal of Synthetic Crystals,2015,44(4):6-12(in Chinese).
    IRAVANITABRIZIPOUR M. Laser direct deposition of metal matrix diamond composite[M]. Ontario: Waterloo, 2016: 77-85.
    WILHELM H, LELAURAIN M. Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional[J]. Journal of Applied Physics,1998,84(12):6552-6564. doi: 10.1063/1.369027
    KNIGHT D S, WHITE W B. Raman and fluorescence spectroscopic characterization of diamonds and CVD diamond films[J]. Proceedings of Spie the International Society for Optical Engineering,1989,1055:144-151.
    吴颖. 新型金刚石工具铜基结合剂及其性能的研究[D]. 重庆: 重庆大学, 2014.

    WU Ying. Study on a new Cu-matrix binding agent of diamond tools and its properties[D]. Chongqing: Chongqing University, 2014(in Chinese).
    ANDERSSON J, ALMQVIST A, LARSSON R. Numerical simulation of a wear experiment[J]. Wear,2011,271(11):2947-2952.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (360) PDF downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint