Citation: | HUANG Shiyuan, LIN Senhuan, DONG Wen, WANG Guohua, WU Xingliang, YUAN Hanqin. Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade acid orange[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1071-1084. doi: 10.13801/j.cnki.fhclxb.20220328.001 |
[1] |
PANG Y, LUO K, TANG L, et al. Carbon-based magnetic nanocomposite as catalyst for persulfate activation: A critical review[J]. Environmental Science and Pollution Research,2019,26(32):32764-32776. doi: 10.1007/s11356-019-06403-4
|
[2] |
罗才武, 陈晴晴, 张德, 等. 多相催化剂以非自由基路线活化过二硫酸盐的研究进展[J]. 工业催化, 2021, 29(3): 11-15.
LUO Caiwu, CHEN Qingqing, ZHANG De, et al. Research progress in the activation of persulfate by non-radical route over heterogeneous catalysts[J]. Industrial Catalysis, 2021, 29(3): 11-15(in Chinese).
|
[3] |
王振宇, 黄仕元, 李胜, 等. 可见光活化过二硫酸盐对染料废水的降解研究[J]. 化工新型材料, 2021, 49(10):175-178.
WANG Zhenyu, HUANG Shiyuan, LI Sheng, et al. Degradation of dye wastewater by activated persulfate with visible light[J]. New Chemical Materials,2021,49(10):175-178(in Chinese).
|
[4] |
尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(II)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(7):1105-1111.
YIN Hanxiong, TANG Yuchao, HUANG Xianhuai, et al. Degradation of direct acid-fast Red 4BS by Persulfate activated by Fe(II)-EDTA enhanced by UV lightt[J]. Study Methodology of Environmental Science,2017,30(7):1105-1111(in Chinese).
|
[5] |
AHN Y Y, YUN E T. Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism[J]. Korean Journal of Chemical Engineering,2019,36(11):1767-1779. doi: 10.1007/s11814-019-0398-4
|
[6] |
THI T, CHENG Y, INAN T, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288: 79-96.
|
[7] |
HUANG W, XIAO S, ZHONG H, et al. Activation of persulfate by carbonaceous materials: A review[J]. Chemical Engineering Journal,2021,418:129297.
|
[8] |
李小娟, 叶兰妹, 廖凤珍, 等. 杂原子掺杂碳材料活化过硫酸盐技术的研究进展[J]. 化工进展, 2021, 40(1):273-281.
LI Xiaojuan, YE Lanmei, LIAO Fengzhen, et al. Research progress in activation of persulfate by hetero-atom doped carbon materials[J]. Chemical Industry and Engineering Progress,2021,40(1):273-281(in Chinese).
|
[9] |
OH W D, VEKSHA A, CHEN X, et al. Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation[J]. Chemical Engineering Journal,2019,374:947-957. doi: 10.1016/j.cej.2019.06.001
|
[10] |
LI H, TIAN J, ZHU Z, et al. Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application[J]. Chemical Engineering Journal,2018,354:507-516. doi: 10.1016/j.cej.2018.08.043
|
[11] |
LI X, JIA Y, ZHOU M, et al. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation[J]. Journal of Hazardous Materials,2020,397:122764. doi: 10.1016/j.jhazmat.2020.122764
|
[12] |
YUAN R, HU L, YU P, et al. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants[J]. Chemosphere,2018,210:877-888. doi: 10.1016/j.chemosphere.2018.07.065
|
[13] |
WANG G, NIE X, JI X, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N[J]. Environmental Science: Nano,2019,6(2):399-410. doi: 10.1039/C8EN01231H
|
[14] |
赵志伟, 陈晨, 梁志杰, 等. 锰氧化物改性生物炭对水中四环素的强化吸附[J]. 农业环境科学学报, 2021, 40(1):194-201.
ZHAO Zhiwei, CHEN Chen, LIANG Zhijie, et al. Enhanced adsorption of tetracycline from water by manganese oxide modified biochar[J]. Journal of Agro-Environment Science,2021,40(1):194-201(in Chinese).
|
[15] |
WANG H, GUO W, LIU B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research,2019,160:405-414. doi: 10.1016/j.watres.2019.05.059
|
[16] |
ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling[J]. Bioresource Technology,2017,245:266-273. doi: 10.1016/j.biortech.2017.08.178
|
[17] |
LAN L H, LI J, FENG Q, et al. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells[J]. International Jour-nal of Hydrogen Energy,2020,45(6):3833-3839.
|
[18] |
谭笑. 锰改性生物炭材料的制备及其对镉砷污染土壤的修复效果研究[D]. 北京: 北京化工大学, 2020.
TAN Xiao. Preparation of manganese modified biochar and its remediation effect on cadmium and Arsenic contami-nated soil[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
|
[19] |
ZHANG K, SUN P, FAYE M C A S, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon,2018,130:730-740. doi: 10.1016/j.carbon.2018.01.036
|
[20] |
XIAO C, WEN D, ZHONG T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257.
|
[21] |
CAZETTA A L, ZHANG T, SILVA T L, et al. Bone char-derived metal-free N-and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation[J]. Applied Catalysis B: Environmental,2018,225:30-39. doi: 10.1016/j.apcatb.2017.11.050
|
[22] |
LI L, LAI C, HUANG F, et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides[J]. Water Research,2019,160:238-248. doi: 10.1016/j.watres.2019.05.081
|
[23] |
LI C, WU M, LIU R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-NC nanofibers with embedding FeCo alloy nanoparticles[J]. Applied Catalysis B: Environmental,2019,244:150-158. doi: 10.1016/j.apcatb.2018.11.039
|
[24] |
PIERRI L, GEMENETZI A, MAVROGIORGOU A, et al. Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2[J]. Molecular Catalysis,2020,489:110946. doi: 10.1016/j.mcat.2020.110946
|
[25] |
LU Z, LIU B, DAI W, et al. Carbon network framework derived iron-nitrogen co-doped carbon nanotubes for enhanced oxygen reduction reaction through metal salt-assisted polymer blowing strategy[J]. Applied Surface Science,2019,463:767-774. doi: 10.1016/j.apsusc.2018.08.231
|
[26] |
HE C, ZHANG T, SUN F, et al. Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta,2017,231:549-556. doi: 10.1016/j.electacta.2017.01.104
|
[27] |
HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal,2020,391:123532. doi: 10.1016/j.cej.2019.123532
|
[28] |
MA W, DU Y, WANG N, et al. ZIF-8 derived nitrogen-doped porous carbon as metal-free catalyst of peroxymonosulfate activation[J]. Environmental Science and Pollution Research,2017,24(19):16276-16288. doi: 10.1007/s11356-017-9191-2
|
[29] |
HAO H, ZHANG Q, QIU Y, et al. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: Synergism between Fe and Mn[J]. Journal of Water Process Engineering,2020,37:101470. doi: 10.1016/j.jwpe.2020.101470
|
[30] |
ZHU K, WANG X, GENG M, et al. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism[J]. Chemical Engineering Journal,2019,374:1253-1263. doi: 10.1016/j.cej.2019.06.006
|
[31] |
沈启斌. 二氧化锰改性药渣生物炭的制备及其去除水中四环素的研究[D]. 广州: 华南理工大学, 2020.
SHEN Qibin. Preparation of manganese dioxide modified residue biochar and its removal of tetracycline from water[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
|
[32] |
HU X, ZHANG H, SUN Z. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by iron, copper and aluminum[J]. Applied Surface Science,2017,392:332-341. doi: 10.1016/j.apsusc.2016.09.047
|
[33] |
QIU Y, ZHANG Q, WANG Z, et al. Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: Radical/non-radical mechanisms and fixed-bed reactor study[J]. Science of the Total Environment,2021,758:143584. doi: 10.1016/j.scitotenv.2020.143584
|
[34] |
WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal,2018,334:1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[35] |
CHEN L, JIANG X, XIE R, et al. A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88[J]. Separation and Purification Technology,2020,250:117232. doi: 10.1016/j.seppur.2020.117232
|
[36] |
LI H, SHAN C, PAN B. Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway[J]. Science of the Total Environment,2019,675:62-72. doi: 10.1016/j.scitotenv.2019.04.171
|
[37] |
WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species[J]. Water Research,2016,98:190-198. doi: 10.1016/j.watres.2016.04.015
|
[38] |
LONG Y, HUANG Y, WU H, et al. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight[J]. Chemical Engineering Journal,2019,369:542-552. doi: 10.1016/j.cej.2019.03.097
|
[39] |
QI C, LIU X, MA J, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere,2016,151:280-288. doi: 10.1016/j.chemosphere.2016.02.089
|
[40] |
LI X, HUANG X, XI S, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society,2018,140(39):12469-12475. doi: 10.1021/jacs.8b05992
|
[41] |
ZHU S, LI X, KANG J, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology,2018,53(1):307-315.
|
[42] |
YU J, FENG H, TANG L, et al. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Progress in Materials Science,2020,111:100654. doi: 10.1016/j.pmatsci.2020.100654
|
[43] |
ZHU K, BIN Q, SHEN Y, et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants[J]. Chemical Engineering Jour-nal,2020,402:126090. doi: 10.1016/j.cej.2020.126090
|
[44] |
DUAN P, MA T, YUE Y, et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation[J]. Environmental Science: Nano,2019,6(6):1799-1811. doi: 10.1039/C9EN00220K
|
[45] |
WANG Y, XIE Y, SUN H, et al. 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J]. Journal of Hazardous Materials,2016,301:56-64. doi: 10.1016/j.jhazmat.2015.08.031
|