GUI Yanghai, QIAN Linlin, TIAN Kuan, et al. Gas sensing performance and preparation of WO3 nanosheets decorated by ZIF-67[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 940-949. DOI: 10.13801/j.cnki.fhclxb.20220325.003
Citation: GUI Yanghai, QIAN Linlin, TIAN Kuan, et al. Gas sensing performance and preparation of WO3 nanosheets decorated by ZIF-67[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 940-949. DOI: 10.13801/j.cnki.fhclxb.20220325.003

Gas sensing performance and preparation of WO3 nanosheets decorated by ZIF-67

  • Metal oxide semiconductor gas sensors are exhibiting great application prospects in the field of toxic and hazardous gas detection gradually, but metal oxide semiconductor sensors are commonly affected by ambient humidity during detection, which significantly limits their applications. In this paper, WO3 nanosheets were successfully in situ grown on the surface of ceramic tubes by hydrothermal method, and ZIF-67 porous materials were grown on the surface of ceramic tubes using it as substrate. Different ZIF-67/WO3 composites were prepared by adjusting the proportion of W and Co. The structures and morphologies of different ZIF-67/WO3 composites were analyzed via XRD, SEM, FTIR and BET techniques. The gas sensing properties of the pristine and different ZIF-67/WO3 composites are investigated. The results indicate that the ZIF-67/WO3(1∶1) composite which W∶Co molar ratio is 1∶1 has the best performance with excellent selectivity to trimethylamine (TEA) at 220℃, and high response of 140.34 to TEA gas with volume fraction of 100×10−6. The response/recovery time is 9 s and 7 s, respectively. The effect of air relative humidity (RH) on the sensors has also studied. The results show that the ZIF-67/WO3(1∶1) sensor can maintain a good response value in an environment humidity up to 75%RH and has a good moisture resistance compared with the pristine WO3 gas sensing material.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return