Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001
Citation: GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001

Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction

doi: 10.13801/j.cnki.fhclxb.20220325.001
  • Received Date: 2022-01-10
  • Accepted Date: 2022-03-19
  • Rev Recd Date: 2022-03-10
  • Available Online: 2022-03-28
  • Publish Date: 2023-02-15
  • As a promising environmental remediation technology, the development of efficient and stable photocatalysts with visible light response is one of the important studies in photocatalysis technology. In this work, g-C3N4/porous organic polymers (POPs) composite photocatalysts were prepared via atmospheric solvothermal method. Different ratios of g-C3N4 were in-situ loaded on conjugated porous organic polymers TAPB-DMTP POP synthesized with 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) and 2, 5-dimethoxybenzene-1, 4-diformaldehyde (DMTP) as monomers. The chemical structure and optical properties of g-C3N4/POPs materials were characterized by XRD, FTIR, BET, TGA, UV-Vis DRS, current-time (i-t) and EIS methods. Cr(VI) was selected as the model pollutant, the photocatalytic reduction activities of g-C3N4/POPs photocatalysts with different g-C3N4 loading ratios were explored under visible light conditions, and the effects of pH value, catalyst dosage and substrate concentration were further investigated. The results shows that g-C3N4/POP-2 exhibits the best photocatalytic reduction performance at pH=2 with the reduction efficiency of 99.1% after 30 min of visible illumination. The reduction efficiency of Cr(VI) is significantly improved over g-C3N4/POP-2 compared with pure g-C3N4 and TAPB-DMTP POP, and the fitted first-order kinetics rate are 22.0 times and 2.2 times that of g-C3N4 and TAPB-DMTP POP, respectively. This composite also exhibits excellent photocatalytic stability as the Cr(VI) reduction rate reaches more than 90% after five cycles.

     

  • loading
  • [1]
    ZHANG G, LAN Z A, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(51):15712-15727. doi: 10.1002/anie.201607375
    [2]
    ONG W, TAN L, NG Y, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
    [3]
    王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).
    [4]
    WANG Q, YANG G, FU Y, et al. Nanospace engineering of metal-organic frameworks for heterogeneous catalysis[J]. ChemNanoMat,2022,8(1):e202100396.
    [5]
    ZHANG W, AGUILA B, MA S. Retracted article: Potential applications of functional porous organic polymer materials[J]. Journal of Materials Chemistry A,2017,5(19):8795-8824. doi: 10.1039/C6TA11168H
    [6]
    赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物制备及其吸附性能[J]. 复合材料学报, 2022, 39(8):3733-3746.

    ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica,2022,39(8):3733-3746(in Chinese).
    [7]
    QIAN X, WANG B, ZHU Z Q, et al. Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine[J]. Journal of Hazardous Materials,2017,338:224-232. doi: 10.1016/j.jhazmat.2017.05.041
    [8]
    ZHANG T, XING G, CHEN W, et al. Porous organic polymers: A promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers,2020,4(2):332-353. doi: 10.1039/C9QM00633H
    [9]
    BYUN J, ZHANG K A I. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations[J]. Materials Horizons,2020,7(1):15-31. doi: 10.1039/C9MH01071H
    [10]
    SONG C, SHAO Y, YUE Z, et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples[J]. Analytica Chimica Acta,2021,1176:338772. doi: 10.1016/j.aca.2021.338772
    [11]
    WANG T, LIANG H, ANITO D, et al. Emerging applications of porous organic polymers in visible-light photocatalysis[J]. Journal of Materials Chemistry A,2020,8(15):7003-7034. doi: 10.1039/D0TA00364F
    [12]
    ZHAO C, CHEN Z, SHI R, et al. Recent advances in conju-gated polymers for visible-light-driven water splitting[J]. Advanced Materials,2020,32(28):e1907296. doi: 10.1002/adma.201907296
    [13]
    XIAO J, LIU X, PAN L, et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials[J]. ACS Catalysis,2020,10(20):12256-12283. doi: 10.1021/acscatal.0c03480
    [14]
    YAO Y, ZHANG R, LIU T, et al. Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework[J]. Inorganic Chemistry Communications,2019,101:160-163. doi: 10.1016/j.inoche.2019.01.040
    [15]
    IAMAEL M, WU Y, TAFFA D H, et al. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production[J]. New Journal of Chemistry,2019,43(18):6909-6920. doi: 10.1039/C9NJ00859D
    [16]
    傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7):3369-3375.

    FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2022,39(7):3369-3375(in Chinese).
    [17]
    ZHANG K, FU Y, HAO D, et al. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction[J]. Journal of Alloys and Compounds,2022,891:161994. doi: 10.1016/j.jallcom.2021.161994
    [18]
    FU Y, ZHANG K, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engi-neering Journal,2021,412:128722. doi: 10.1016/j.cej.2021.128722
    [19]
    SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications,2016,52(18):3690-3693. doi: 10.1039/C5CC10221A
    [20]
    XIN B, REN Z, HU H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Applied Surface Science,2005,252(5):2050-2055. doi: 10.1016/j.apsusc.2005.03.172
    [21]
    GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [22]
    HE Q, FU Y, GE X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering,2021,9(5):105961. doi: 10.1016/j.jece.2021.105961
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (506) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return