Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
CHEN Xiaojie, MA Ge, MENG Huidi, CUI Zhe, FU Peng, ZHAO Wei, PANG Xinchang, ZHAO Qingxiang, LIU Minying, ZHANG Xiaomeng. Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003
Citation: CHEN Xiaojie, MA Ge, MENG Huidi, CUI Zhe, FU Peng, ZHAO Wei, PANG Xinchang, ZHAO Qingxiang, LIU Minying, ZHANG Xiaomeng. Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003

Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method

doi: 10.13801/j.cnki.fhclxb.20220321.003
Funds:  National Key Research and Development Program of China (2017YFB0307600); China Postdoctoral Science Foundation (2020M682317); Henan Postdoctoral Foundation (202002018); Opening Project of State Key Laboratory of Polymer Materials Engineering (sklpme2021-05-10); Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430037)
  • Received Date: 2022-01-10
  • Accepted Date: 2022-03-13
  • Rev Recd Date: 2022-03-04
  • Available Online: 2022-03-22
  • Publish Date: 2023-02-01
  • Fabrication of the polymer-based composites with excellent high temperature resistance and thermal conductivity is very important for the packaging protection, efficient heat dissipation and processing of electronic components. In this work, high temperature resistant and thermally conductive hexagonal boron nitride (BN)/semi-aromatic polyamide 12T (PA12T) composites with uniform dispersion and orientation filler structure were prepared by mixed solvent dispersion (MSD) method, and the microstructure, thermal conductivity, high-temperature resistance, dielectric and mechanical properties of the composites were systematically characterized. The results show that the BN powder and PA12T powder can be suspended uniformly in the mixed solvent. Next, combining the vacuum-assisted self-assembly technique and vacuum hot compression method, the composites with uniformly dispersed and oriented BN structure are fabricated successfully. When the content of BN is 40wt% in BN/PA12T composite, the in-plane thermal conductivity of the composite prepared by the MSD method is 2.73 W/(m·K), which is 1.72 times that of the composite (1.59 W/(m·K)) prepared by the mechanical mixing (MM) method. Furthermore, the composite prepared by the MSD method also possesses excellent mechanical properties, low dielectric permittivity of 3.6 and dielectric loss of 0.016, outstanding high-temperature resistance with the initial decomposition temperature of 446℃ and Vicat softening temperature of more than 250℃. Therefore, the BN/PA12T composite prepared by the MSD method will have a wide range of applications in the fields of electronic packaging and thermal management.


  • loading
  • [1]
    LIU H B, FU R L, SU X Q, et al. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application[J]. Composites Communications,2021,23:100593. doi: 10.1016/j.coco.2020.100593
    HAN Y X, SHI X T, YANG X T, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology,2020,187:107944. doi: 10.1016/j.compscitech.2019.107944
    WAN Y J, LI G, YAO Y M, et al. Recent advances in polymer-based electronic packaging materials[J]. Composites Communications,2020,19:154-167. doi: 10.1016/j.coco.2020.03.011
    别正业. 无铅焊接技术的现状与应用[J]. 电机电器技术, 2002(6):12-14.

    BIE Zhengye. The present situations and applications of lead-free soldering technology[J]. Electric Machine and Apparatus Technology,2002(6):12-14(in Chinese).
    陈仕国, 戈早川, 杨海朋, 等. 聚合物基电子封装复合材料研究进展[J]. 宇航材料工艺, 2007(5):4-7. doi: 10.3969/j.issn.1007-2330.2007.05.002

    CHEN Shiguo, GE Zaochuan, YANG Haipeng, et al. Progress in polymer composite for electroinc packaging[J]. Aerospace Materials and Technology,2007(5):4-7(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.05.002
    JIN F L, LI X, PARK S. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1-11. doi: 10.1016/j.jiec.2015.03.026
    OU X H, CHEN S S, LU X M, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications,2021,23:100549. doi: 10.1016/j.coco.2020.100549
    GWON T M, KIM C, SHIN S, et al. Liquid crystal polymer (LCP)-based neural prosthetic devices[J]. Biomedical Engineering Letters,2016,6(3):148-163. doi: 10.1007/s13534-016-0229-z
    ZHANG C H. Progress in semicrystalline heat-resistant polyamides[J]. E-Polymers,2018,18(5):373-408. doi: 10.1515/epoly-2018-0094
    LIU B W, LONG J W, CHEN L, et al. Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance[J]. Polymer,2021,224:123757. doi: 10.1016/j.polymer.2021.123757
    张美林, 岳文斌, 郎绪志, 等. 半芳香族聚酰胺特种工程塑料的发展与应用现状[J]. 中国塑料, 2020, 34(5):115-122.

    ZHANG Meilin, YUE Wenbin, LANG Xuzhi, et al. Development and application of special engineering plastics: Semi-aromatic polyamide[J]. China Plastics,2020,34(5):115-122(in Chinese).
    张传辉, 麦堪成, 曹民, 等. 高温尼龙研究进展[J]. 工程塑料应用, 2012, 40(11):95-100. doi: 10.3969/j.issn.1001-3539.2012.11.023

    ZHANG Chuanhui, MAI Kancheng, CAO Min, et al. Research progress in heat-resistant nylon[J]. Engineering Plastics Application,2012,40(11):95-100(in Chinese). doi: 10.3969/j.issn.1001-3539.2012.11.023
    PAPASPYRIDES C D, PORFYRIS A D, RULKENS R, et al. The effect of diamine length on the direct solid state polycondensation of semi-aromatic nylon salts[J]. Journal of Polymer Science Part A-Polymer Chemistry,2016,54(16):2493-2506. doi: 10.1002/pola.28126
    LIU M Y, LI K F, YANG S H, et al. Synthesis and thermal decomposition of poly(dodecamethylene terephthalamide)[J]. Journal of Applied Polymer Science,2011,122(5):3369-3376. doi: 10.1002/app.34416
    CAO J P, ZHAO J, ZHAO X D, et al. High thermal conducti-vity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers[J]. Composites Science and Technology,2013,89:142-148. doi: 10.1016/j.compscitech.2013.09.024
    CAO B Y, LI Y W, KONG J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique[J]. Polymer,2011,52(8):1711-1715. doi: 10.1016/j.polymer.2011.02.019
    HU J T, HUANG Y, YAO Y M, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces,2017,9(15):13544-13553.
    PAN G R, YAO Y M, ZENG X L, et al. Learning from natural nacre: Constructing layered polymer composites with high thermal conductivity[J]. ACS Applied Materials & Interfaces,2017,9(38):33001-33010.
    REN Y J, REN L C, LI J X, et al. Enhanced thermal conducti-vity in polyamide 6 composites based on the compatibilization effect of polyether-grafted graphene[J]. Composites Science and Technology,2020,199:108340. doi: 10.1016/j.compscitech.2020.108340
    GUO H C, ZHAO H Y, NIU H Y, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano,2021,15(4):6917-6928. doi: 10.1021/acsnano.0c10768
    刘民英, 赵清香, 付鹏, 等. 一种半芳香尼龙的制备方法: 中国专利, CN101768266A[P]. 2010-07-07.

    LIU Minying, ZHAO Qingxiang, FU Peng, et al. A preparation method of semi-aromatic nylon: Chinese patent, CN101768266A[P]. 2010-07-07(in Chinese).
    ZHANG J, WANG X N, YU C P, et al. A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity[J]. Composites Science and Technology,2017,149:41-47. doi: 10.1016/j.compscitech.2017.06.008
    WANG X, WU P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation[J]. ACS Applied Materials & Interfaces,2018,10(40):34311-34321.
    国家质量技术监督局. 热塑性塑料维卡软化温度(VST)的测定: GB/T 1633—2000[S]. 北京: 中国标准出版社, 2000.

    State Bureau of Quality and Technical Supervision. Plastics-Thermoplasitic materials-Determination of vicat softening temperature (VST): GB/T 1633—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plastic-Deformation of tensile properties-Determination for moulding or extrusion plastic: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plasitc-Deformation of flexural properties: GB/T 9341—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    ZHANG X M, ZHANG J J, XIA L C, et al. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides[J]. ACS Applied Materials & Interfaces,2017,9(27):22977-22984.
    YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
    LIN Z Y, LIU Y, RAGHAVAN S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation[J]. ACS Applied Materials & Interfaces,2013,5(15):7633-7640.
    SONG N, JIAO D J, DING P, et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C,2016,4(2):305-314. doi: 10.1039/C5TC02194D
    LEUNG S N, KHAN O M, SHI H, et al. Study on liquid crystal polymer-hexagonal boron nitride composites for hybrid heat sinks[J]. Industrial & Engineering Chemistry Research,2013,52(24):8332-8339.
    GHOSH B, XU F, HOU X H. Thermally conductive poly(ether ether ketone)/boron nitride composites with low coefficient of thermal expansion[J]. Journal of Materials Science,2021,56(17):10326-10337. doi: 10.1007/s10853-021-05923-0
    LIU X, GAO Y W, SHANG Y S, et al. Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties[J]. Polymer,2020,203:122763. doi: 10.1016/j.polymer.2020.122763
    BOZKURT Y E, YILDIZ A, TÜRKARSLAN Ö, et al. Thermally conductive h-BN reinforced PEI composites: The role of processing conditions on dispersion states[J]. Materials Today Communications,2021,29:102854. doi: 10.1016/j.mtcomm.2021.102854
    LEE H L, KWON O H, HA S M, et al. Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles[J]. Physical Chemistry Chemical Physics,2014,16(37):20041-20046. doi: 10.1039/C4CP02730B
    GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
    KIM K, LEE J, RYU S, et al. Laser direct structuring and electroless plating applicable super-engineering plastic PPS based thermal conductive composite with particle surface modification[J]. RSC Advances,2018,8(18):9933-9940. doi: 10.1039/C8RA00967H
    YANG X T, TANG L, GUO Y Q, et al. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-poss functionalized n-BN fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,101:237-242. doi: 10.1016/j.compositesa.2017.06.005
    ZHANG X W, ZHANG B, SUN M M, et al. Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(3): 1577-1588.
    YANG Y S, LI D X, SI G J, et al. Improved thermal and mechanical properties of carbon fiber filled polyamide 46 composites[J]. Journal of Polymer Engineering,2017,37(4):345-353. doi: 10.1515/polyeng-2016-0092
    张娜娜. 短切玻纤增强尼龙12T复合材料的制备和性能研究[D]. 郑州: 郑州大学, 2018.

    ZHANG Nana. Preparation and properties of short glass fiber reinforced PA12T composites[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    MENG H, SUI G X, XIE G Y, et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 compo-sites under dry sliding and water lubricated condition[J]. Composites Science and Technology,2009,69(5):606-611. doi: 10.1016/j.compscitech.2008.12.004
    CHATTERJEE S, NUESCH F A, CHU B T. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites[J]. Nanotechnology,2011,22(27):275714. doi: 10.1088/0957-4484/22/27/275714
    HOU J, LI G H, YANG N, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity[J]. RSC Advances,2014,4(83):44282-44290. doi: 10.1039/C4RA07394K
    DASTAKEER S, SAMINATHAN P, VENKATESAN S, et al. Studies on thermal degradation kinetics and dielectric properties of polyether imide foam/nanosilica-based nanocomposites[J]. Plastics Rubber and Composites,2019,48(8):356-363. doi: 10.1080/14658011.2019.1630200
    WU K, LEI C X, YANG W X, et al. Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss[J]. Composites Science and Technology,2016,134:191-200. doi: 10.1016/j.compscitech.2016.08.015
    LATURIA A, VAN DE PUT M L, VANDENBERGHE W G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk[J]. NPJ 2D Materials and Applications,2018,2(1):6. doi: 10.1038/s41699-018-0050-x
    蔡德龙, 陈斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(Z1):4-120.

    CAI Delong, CHEN Fei, HE Fengmei, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics,2019,40(Z1):4-120(in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (522) PDF downloads(39) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint