Citation: | BAO Jiuwen, WANG Yunwei, MOU Xinyu, et al. Chloride ingress behavior of recycled aggregate concrete subjected to sustained compressive loading and drying-wetting cycles[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1015-1024. doi: 10.13801/j.cnki.fhclxb.20220321.002 |
[1] |
肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008.
XIAO Jianzhuang. Recycled concrete[M]. Beijing: China Architecture and Building Press, 2008(in Chinese).
|
[2] |
PEDRO D, DE BRITO J, EVANGELISTA L. Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume[J]. Cement and Concrete Composites,2018,93:63-74. doi: 10.1016/j.cemconcomp.2018.07.002
|
[3] |
宋鲁光. 荷载干湿交替作用下氯离子在混凝土中的传输性能研究[D]. 南京: 东南大学, 2015.
SONG Luguang. Transport of chloride in concrete subjected to coupling flexural load and wetting-drying cycles[D]. Nanjing: Southeast University, 2015(in Chinese).
|
[4] |
CAO T, ZHANG L, SUN G, et al. Simulation of chloride ion transport in concrete under the coupled effects a bending load and drying-wetting cycles[J]. Construction and Building Materials,2020,241:118045. doi: 10.1016/j.conbuildmat.2020.118045
|
[5] |
WANG J, BASHEER P, NANUKUTTAN S, et al. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete[J]. Construction and Building Materials,2016,108:56-66. doi: 10.1016/j.conbuildmat.2016.01.005
|
[6] |
张伟平, 张庆章, 顾祥林, 等. 环境条件和应力水平对混凝土中氯离子传输的影响[J]. 江苏大学学报(自然科学版), 2013, 34(1):101-106.
ZHANG Weiping, ZHANG Qingzhang, GU Xianglin, et al. Effects of environmental conditions and stress level on chloride ion transport in concrete[J]. Journal of Jiangsu University (Natural Science Edition),2013,34(1):101-106(in Chinese).
|
[7] |
XU J, LI F, ZHAO J, et al. Model of time-dependent and stress-dependent chloride penetration of concrete under sustained axial pressure in the marine environment[J]. Construction and Building Materials,2018,170:207-216. doi: 10.1016/j.conbuildmat.2018.03.077
|
[8] |
WU J, LI H, WANG Z, et al. Transport model of chloride ions in concrete under loads and drying-wetting cycles[J]. Construction and Building Materials,2016,112:733-738. doi: 10.1016/j.conbuildmat.2016.02.167
|
[9] |
欧阳璋, 陈幼佳. 重复压应力作用后再生混凝土中氯离子渗透性研究[J]. 混凝土, 2017(1):31-33. doi: 10.3969/j.issn.1002-3550.2017.01.009
OUYANG Zhang, CHEN Youjia. Study on chloride permeability of recycled concrete after repeated compressive stress[J]. Concrete,2017(1):31-33(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.01.009
|
[10] |
鲍玖文, 李树国, 张鹏, 等. 轴压重复荷载作用后再生混凝土毛细吸水性能[J]. 建筑材料学报, 2021, 24(1):71-76. doi: 10.3969/j.issn.1007-9629.2021.01.010
BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Capillary water absorption of recycled aggregate concrete after repeated axial compressive loading[J]. Journal of Building Materials,2021,24(1):71-76(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.010
|
[11] |
王玉建. 加载对再生骨料混凝土渗透性的影响[D]. 北京: 北京交通大学, 2010.
WANG Yujian. Effect of loading on permeability of recycled aggregate concrete[D]. Beijing: Beijing Jiaotong University, 2010(in Chinese).
|
[12] |
QI B, GAO J, CHEN F, et al. Chloride penetration into recycled aggregate concrete subjected to wetting-drying cycles and flexural loading[J]. Construction and Building Materials,2018,174:130-137. doi: 10.1016/j.conbuildmat.2018.04.122
|
[13] |
WU Y, XIAO J. The effect of microscopic cracks on chloride diffusivity of recycled aggregate concrete[J]. Construction and Building Materials,2018,170:326-346. doi: 10.1016/j.conbuildmat.2018.03.045
|
[14] |
JIN L, YU H, WANG Z, et al. Effect of crack and damaged zone on chloride penetration in recycled aggregate concrete: A seven-phase mesoscale numerical method[J]. Construction and Building Materials,2021,291:123383. doi: 10.1016/j.conbuildmat.2021.123383
|
[15] |
中国国家标准化管理委员会. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.
Standardization Administration of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
|
[16] |
中国国家标准化管理委员会. 建筑用卵石、碎石: GB/T 14685—2011[S]. 北京: 中国标准出版社, 2011.
Standardization Administration of the People's Republic of China. Pebbie and crushed stone for building: GB/T 14685—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
|
[17] |
郭远新, 李秋义, 单体庆, 等. 再生粗骨料混凝土配合比简易设计方法[J]. 沈阳建筑大学学报(自然科学版), 2017(6):75-84.
GUO Yuanxin, LI Qiuyi, SHAN Tiqing, et al. Simplified design method for mix proportion of recycled coarse aggregate concrete[J]. Journal of Shenyang Jianzhu University (Natural Science),2017(6):75-84(in Chinese).
|
[18] |
XIAO J, LI J, ZHANG C. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research,2005,35(6):1187-1194. doi: 10.1016/j.cemconres.2004.09.020
|
[19] |
MA Z, LIU M, TANG Q, et al. Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage[J]. Construction and Building Materials,2020,237:117648. doi: 10.1016/j.conbuildmat.2019.117648
|
[20] |
吴相豪, 岳鹏君. 再生混凝土中氯离子渗透性能试验研究[J]. 建筑材料学报, 2011, 14(3):381-384, 417. doi: 10.3969/j.issn.1007-9629.2011.03.018
WU Xianghao, YUE Pengjun. Experimental study on chloride ion penetration into recycled aggregate concrete[J]. Journal of Building Materials,2011,14(3):381-384, 417(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.03.018
|
[21] |
肖建庄, 李标, 杨钱荣, 等. 复合改性再生混凝土抗氯离子渗透性能[J]. 混凝土与水泥制品, 2019, 282(10):1-5.
XIAO Jianzhuang, LI Biao, YANG Qianrong, et al. Study on chloride penetration resistance of compound modified recycled concrete[J]. China Concrete and Cement Products,2019,282(10):1-5(in Chinese).
|
[22] |
WANG W, WU J, WANG Z, et al. Chloride diffusion coefficient of recycled aggregate concrete under compressive loading[J]. Materials and Structures,2016,49(11):4729-4736. doi: 10.1617/s11527-016-0820-x
|
[23] |
鲍玖文, 王立成. 干湿交替下水分及氯离子在混凝土中传输的细观数值模拟[J]. 海洋工程, 2014, 32(1):68-74, 83. doi: 10.3969/j.issn.1005-9865.2014.01.009
BAO Jiuwen, WANG Licheng. Mesoscale simulation of water and chloride transport in concrete subjected to drying-wetting cycles[J]. The Ocean Engineering,2014,32(1):68-74, 83(in Chinese). doi: 10.3969/j.issn.1005-9865.2014.01.009
|
[24] |
曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护[D]. 西安: 西安建筑科技大学, 2013.
CAO Weiqun. Chloride transport and cover protection of concrete under drying-wetting cycles[D]. Xi’an: Xi’an University of Architecture and Technology, 2013(in Chinese).
|
[25] |
中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.
Ministry of Transport of the People's Republic of China. Technical specification for concrete testing of port and waterway engineering: JTS/T 236—2019[S]. Beijing: China Communication Press, 2019(in Chinese).
|
[26] |
高延红, 赵静, 郑盈盈, 等. 模拟自然潮差环境混凝土氯离子侵蚀对流区深度的相似性与随机性[J]. 自然灾害学报, 2018, 27(5):63-69.
GAO Yanhong, ZHAO Jing, ZHENG Yingying, et al. Similarity and randomness of convection zone depth of chloride in concrete under simulated tidal environment[J]. Journal of Natural Disasters,2018,27(5):63-69(in Chinese).
|
[27] |
BAO J, LI S, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Construction and Building Materials,2020,239:117845. doi: 10.1016/j.conbuildmat.2019.117845
|
[28] |
WANG J, ZHANG J, CAO D. Pore characteristics of recycled aggregate concrete and its relationship with durability under complex environmental factors[J]. Construction and Building Materials,2020,272:121642.
|
[29] |
CHEN D, YANG K, HU D, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials,2021,273:121986. doi: 10.1016/j.conbuildmat.2020.121986
|
[30] |
庄智杰. 实海暴露和人工摸拟潮汐区水泥基材料氯离子侵蚀机理研究[D]. 青岛: 青岛理工大学, 2021.
ZHUANG Zhijie. Study on mechanism of chloride ion erosion on cement-based materials in real sea exposure and artificial tidal zone[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese).
|
[31] |
康天蓓, 刘昱, 周静海, 等. 干湿循环下废弃纤维再生混凝土氯离子传输性能[J]. 建筑材料学报, 2022, 25(4): 389-394.
KANG Tianbei, LIU Yu, ZHOU Jinghai, et al. Chloride transport performance of waste fiber recycled concrete under wet-dry cycles[J]. Journal of Building Materials, 2022, 25(4): 389-394(in Chinese).
|