Citation: | MENG Haoyu, CHEN Bo, SONG Jiang, SUN Chaoming, YAN Chenglei, AN Xin, ZHANG Tao. Compression failure life prediction and verification of polymethacrylimide foam[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1218-1228. doi: 10.13801/j.cnki.fhclxb.20220314.003 |
[1] |
胡培, 陈志东, 薛元德, 等. 泡沫夹层结构的模压共固化成型工艺及参数选定[J]. 工程塑料应用, 2007(8):25-28. doi: 10.3969/j.issn.1001-3539.2007.08.007
HU Pei, CHEN Zhidong, XUE Yuande, et al. Pressmolding co-curing processing method and specification determination offoamcored sandwich structure[J]. Engineering Plastics Application,2007(8):25-28(in Chinese). doi: 10.3969/j.issn.1001-3539.2007.08.007
|
[2] |
刘燕青, 黄安民, 刘婷, 等. 聚甲基丙烯酰亚胺泡沫塑料的制备及研究现状[J]. 塑料科技, 2012(6):86-90. doi: 10.3969/j.issn.1005-3360.2012.06.015
LIU Yanqing, HUANG Anmin, LIU Ting, et al. Research situation of polymethacrylimide foam plastics and its preparation[J]. Plastics Science and Technology,2012(6):86-90(in Chinese). doi: 10.3969/j.issn.1005-3360.2012.06.015
|
[3] |
SEIBERT H F. Applications for PMI foams in aerospace sandwich structures[J]. Reinforced Plastics,2006,50(1):44-48.
|
[4] |
SERVATY S, GEYER W, RAU N, et al. Method for producing block-shaped polymethacrylimide foamed materials: WO, WO2000063280 A1[P]. 2003-12-30.
|
[5] |
RAMAKRISHNAN K R, GUERARD S, MAHEO L, et al. A new method for the study of parabolic impact of foam-core sandwich panels[J]. Composites,2019,167:717-727.
|
[6] |
GUEDES, MIRANDA R. A systematic methodology for creep master curve construction using the stepped isostress method (SSM): A numerical assessment[J]. Mechanics of Time-dependent Materials,2018,22:79-93.
|
[7] |
ZHONG J, YANG C, MA W, et al. Long-term creep behavior prediction of polymethacrylimide foams using artificial neural networks[J]. Polymer Testing,2020,93:43-53.
|
[8] |
ZHOU H, LIU R, HU Y, et al. Quasi-static compressive strength of polymethacrylimide foam-filled square carbon fiber reinforced composite honeycombs[J]. Journal of Sandwich Structures and Materials,2020,0(0):1-17.
|
[9] |
李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J]. 科技创新导报, 2009(14):9-11. doi: 10.3969/j.issn.1674-098X.2009.14.002
LI Tao, CHEN Wei, CHENG Li, et al. Development and application of foam sandwich structural composites[J]. Science and Technology Innovation Heral,2009(14):9-11(in Chinese). doi: 10.3969/j.issn.1674-098X.2009.14.002
|
[10] |
SIIVOLA J T, MINAKUCHI S, TAKEDA N. Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures[J]. Journal of Sandwich Structures & Materials,2015,17(4):149-155.
|
[11] |
陈吉平, 毛敏梁, 郑义珠, 等. 湿热环境下的PMI泡沫材料压缩蠕变特性[J]. 工程塑料应用, 2020, 48(2): 75-80.
CHEN Jiping, MAO Minliang, ZHENG Yizhu, et al. Compressive creep properties of PMI foam in hydrothermal condition[J]. Engineering Plastics Application, 2020,48(2): 75-80(in Chinese).
|
[12] |
刘浩, 韩常玉, 董丽松. 闭孔泡沫塑料结构与性能研究进展[J]. 高分子通报, 2008(3):31-44.
LIU Hao, HAN Changyu, DONG Lisong. Research progress in structure-properties relationships of closed cell polymer foams[J]. Chinese Polymer Bulletin,2008(3):31-44(in Chinese).
|
[13] |
毛敏梁, 彭昆, 郑翻番, 等. 聚甲基丙烯酰亚胺(PMI)泡沫夹芯复合材料的滚筒剥离性能研究[J]. 玻璃钢/复合材料, 2017(11):62-65.
MAO Minliang, PENG Kun, ZHENG Fanfan, et al. The study of peel strength of PMI foam sandwich structure compo-sites[J]. Composite Science and Engineering,2017(11):62-65(in Chinese).
|
[14] |
米星宇, 张广成, 张乐, 等. 硬质泡沫塑料耐热性测试方法研究[J]. 工程塑料应用, 2012, 40(8):74-79. doi: 10.3969/j.issn.1001-3539.2012.06.001
MI Xingyu, ZHANG Guangcheng, ZHANG Le, et al. Heat resistance testing methods of rigid foam plastics[J]. Engi-neering Plastics Application,2012,40(8):74-79(in Chinese). doi: 10.3969/j.issn.1001-3539.2012.06.001
|
[15] |
GNIP I Y, VAITKUS S, KERULIS V, et al. Analytical description of the creep of expanded polystyrene (EPS) under long-term compressive loading[J]. Polymer Testing,2011,30(5):493-500. doi: 10.1016/j.polymertesting.2011.03.012
|
[16] |
贾思宜, 王莹, 成艳娜. PMI泡沫真空辅助热成型工艺及其生产应用研究[J]. 科技创新导报, 2020, 17(508):124-126.
JIA Siyi, WANG Ying, CHENG Yanna. Research on PMI foam vacuum-assisted thermo forming process and its production application[J]. Science and Technology Innovation Herald,2020,17(508):124-126(in Chinese).
|
[17] |
刘永涛, 杨杰, 刘新东. 夹层结构用泡沫芯材的耐水性能[J]. 工程塑料应用, 2018, 46(4):108-112.
LIU Yongtao, YANG Jie, LIU Xindong. Water durability of foam core used in sandwich structure[J]. Engineering Plastics Application,2018,46(4):108-112(in Chinese).
|
[18] |
曾泽群, 吴锦裕, 向辉, 等. 吸湿行为对PMI泡沫性能及应用的影响[J]. 中国塑料, 2021, 35(11):64-70.
ZENG Zequn, WU Jinyu, XIANG Hui, et al. Effect of hygroscopic behavior on properties and applications of PMI foam[J]. China Plasics,2021,35(11):64-70(in Chinese).
|
[19] |
SEIBERT H F. PMI foam cores find further applications[J]. Reinforced Plastics,2000,44(1):36-38. doi: 10.1016/S0034-3617(00)86485-1
|
[20] |
FENG J, CHUHAN Z, GANG W, et al. Creep modeling in excavation analysis of a high rock slope[J]. Journal of Geotechnical & Geoenvironmental Engineering,2003,129(9):849-857.
|
[21] |
CHEN S M, GAO H L, SUN X H, et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy[J]. Matter, 2019, 1(2): 412-427.
|
[22] |
BOZORG-HADDAD A, ISKANDER M. Predicting compres-sive creep behavior of virgin HDPE using thermal acceleration[J]. Journal of Materials in Civil Engineering,2011,23(8):1154-1162. doi: 10.1061/(ASCE)MT.1943-5533.0000278
|
[23] |
YANG Y, LIU J, XIN L U, et al. Study of manufacturing pressure effect on bonding quality of polymethacrylimide (PMI) foams/high temperature cured carbon fiber sandwich composites structure[J]. Hi-Tech Fiber & Application,2012,37(1):14-21.
|
[24] |
王凯, 贺强. 聚甲基丙烯酰亚胺泡沫夹层结构全生命周期的关键技术研究进展[J]. 复合材料学报, 2020, 37(8): 1805-1822.
WANG Kai, HE Qiang. Progress on study of key technologies for polymethacrylimide foam core sandwich lifecycle[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1805-1822(in Chinese).
|
[25] |
JADAAN O M, POWERS L M, GYEKENYESI J P. Creep life prediction of ceramic components subjected to transient tensile and compressive stress states[C]//Turbo Expo: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 1997: 235-278.
|
[26] |
MAHMUD H A, RADUE M S, CHINKANJANAROT S, et al. Multiscale modeling of carbon fiber-graphene nanoplatelet-epoxy hybrid composites using a reactive force field[J]. Composites Part B: Engineering, 2019, 172: 628-635.
|