Citation: | LI Chongyang, SONG Xiaoyong, CHEN Lili, TAO Ying, CHEN Zhiquan, ZHAO Bin. Microstructure and thermoelectric properties of MWCNT/PEDOT composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 860-871. doi: 10.13801/j.cnki.fhclxb.20220307.002 |
[1] |
CHATTERJEE K, GHOSH T K. Thermoelectric materials for textile applications[J]. Molecules,2021,26(11):3154-3165. doi: 10.3390/molecules26113154
|
[2] |
PARK D, KIM M, KIM J. High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting[J]. Journal of Alloys and Compounds,2021,884:161098. doi: 10.1016/j.jallcom.2021.161098
|
[3] |
ZHOU X Y, YAN Y C, LU X, et al. Routes for high-perfor-mance thermoelectric materials[J]. Materials Today,2018,21(9):974-988. doi: 10.1016/j.mattod.2018.03.039
|
[4] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science,2008,321(5895):1457-1461. doi: 10.1126/science.1158899
|
[5] |
BAKKER F L, SLACHTER A, ADAM J P, et al. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves[J]. Physical Review Letters,2010,105(13):136601. doi: 10.1103/PhysRevLett.105.136601
|
[6] |
YANG J H, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin,2006,31(3):224-229. doi: 10.1557/mrs2006.49
|
[7] |
CHEN Z G, HAN G, YANG L, et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science-Materials International,2012,22(6):535-549. doi: 10.1016/j.pnsc.2012.11.011
|
[8] |
SHI X L, ZHENG K, HONG M, et al. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering[J]. Chemical Science,2018,9(37):7376-7389. doi: 10.1039/C8SC02397B
|
[9] |
SHI X L, ZHENG K, LIU W D, et al. Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects[J]. Advanced Energy Materials,2018,8(21):1800775. doi: 10.1002/aenm.201800775
|
[10] |
SNYDER G J, TOBBER E S. Complex thermoelectric materials[J]. Nature Materials,2008,7(2):105-114. doi: 10.1038/nmat2090
|
[11] |
ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric Fig. of merit in SnSe crystals[J]. Nature,2014,508(7496):373-377. doi: 10.1038/nature13184
|
[12] |
SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angewandte Chemie International Edition,2009,48(46):8616-8639. doi: 10.1002/anie.200900598
|
[13] |
MCGRAIL B T, SEHIRLIOGLU A, PENTZER E. Polymer composites for thermoelectric applications[J]. Angewandte Chemie International Edition,2015,54(6):1710-1723. doi: 10.1002/anie.201408431
|
[14] |
VENKATASUBRAMANIAN R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Physical Review B,2000,61(4):3091-3097. doi: 10.1103/PhysRevB.61.3091
|
[15] |
TIAN Z, GARG J, ESFARJANI K, et al. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations[J]. Physical Review B, 2012, 85(18): 184303.
|
[16] |
王艳, 陈南迪, 杨陈, 等. 二维材料XTe2(X = Pd, Pt)热电性能的第一性原理计算[J]. 物理学报, 2021, 70(11):116301. doi: 10.7498/aps.70.20201939
WANG Yan, CHEN Nandi, YANG Chen, et al. Thermoelectric transport properties of XTe2 (X = Pd, Pt) two-dimensional materials calculations[J]. Acta Physics Sinica,2021,70(11):116301(in Chinese). doi: 10.7498/aps.70.20201939
|
[17] |
HE H F, LI X F, CHEN Z Q, et al. Interplay between point defects and thermal conductivity of chemically synthe-sized Bi2Te3 nanocrystals studied by positron annihilation[J]. The Journal of Physical Chemistry C,2014,118(38):22389-22394. doi: 10.1021/jp508085a
|
[18] |
WU D, ZHAO L D, HAO S Q, et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. Journal of the American Chemical Society,2014,136(32):11412-11419. doi: 10.1021/ja504896a
|
[19] |
范人杰, 江先燕, 陶奇睿, 等. In1+xTe化合物的结构及热电性能研究[J]. 物理学报, 2021, 70(13): 137102.
FAN Renjie, JIANG Xianyan, TAO Qirui, et al. Structure and thermoelectric properties of In1+xTe compounds[I]. Acta Physical Sinica, 2021, 70(13): 137102(in Chinese).
|
[20] |
WANG F Q, ZHANG S H, YU J B, et al. Thermoelectric pro-perties of single-layered SnSe sheet[J]. Nanoscale,2015,7(38):15962-15970. doi: 10.1039/C5NR03813H
|
[21] |
王作成, 李涵, 苏贤礼, 等. In0.3Co4Sb12-xSex方钴矿热电材料的制备和热电性能[J]. 物理学报, 2011, 60(2):027202. doi: 10.7498/aps.60.027202
WANG Zuocheng, LI Han, SU Xianli, et al. Synthesis and thermoelectric properties of thermoelectric materials of the skutterudites In0.3Co4Sb12-xSex[J]. Acta Physical Sinica,2011,60(2):027202(in Chinese). doi: 10.7498/aps.60.027202
|
[22] |
APPEL O, GELBSTEIN Y. A comparison between the effects of Sb and Bi doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn half-heusler alloy[J]. Jour-nal of Electronic Materials,2013,43(6):1976-1982.
|
[23] |
ZHOU H, CHUA M H, ZHU Q, et al. High-performance PEDOT : PSS-based thermoelectric composites[J]. Compo-sites Communications, 2021, 27: 100877.
|
[24] |
HAN J F, GANLEY C, HU Q, et al. Using preformed meisenheimer complexes as dopants for n-type organic thermoelectrics with high Seebeck coefficients and power factors[J]. Advanced Functional Materials,2021,31(18):2010567. doi: 10.1002/adfm.202010567
|
[25] |
DENG L, CHEN G M. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance[J]. Nano Energy, 2021, 80: 105448.
|
[26] |
KAUL P B, DAY K A, ABRAMSON A R. Application of the three omega method for the thermal conductivity measurement of polyaniline[J]. Journal of Applied Physics,2007,101(8):083507. doi: 10.1063/1.2714650
|
[27] |
刘祎, 张荔. 聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展[J]. 复合材料学报, 2021, 38(2):287-297.
LIU Wei, ZHANG Li. Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials[J]. Acta Materiae Compositae Sinica,2021,38(2):287-297(in Chinese).
|
[28] |
KIM D, KIM Y, CHOI K, et al. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3, 4-ethylenedioxythiophene) poly(styrenesulfonate)[J]. ACS Nano,2010,4(1):513-523. doi: 10.1021/nn9013577
|
[29] |
SCHOLDT M, DO H, LANG J, et al. Organic semiconductors for thermoelectric applications[J]. Journal of Eelctro-nic Materials,2010,39(9):1589-1592. doi: 10.1007/s11664-010-1271-8
|
[30] |
LIU C C, XU J K, LU B Y, et al. Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT: PSS films by adding ionic liquids into a polymer solution[J]. Journal of Electronic Materials,2012,41(4):639-645. doi: 10.1007/s11664-012-1942-8
|
[31] |
LU W, LAI X F, LIU Q L, et al. Enhanced thermoelectric performance of BiSe by Sn doping and ball milling[J]. Ceramics International,2021,47(18):26375-26382. doi: 10.1016/j.ceramint.2021.06.048
|
[32] |
LI H B, ZONG Y D, DING Q J, et al. Paper-based thermoelectric generator based on multi-walled carbon nano-tube/carboxylated nanocellulose[J]. Journal of Power Sources,2021,500(15):229992.
|
[33] |
CHEN R S, TANG J H, YAN Y J, et al. Solvent-mediated n-type doping of SWCNTs to achieve superior thermoelectric power factor[J]. Advanced Materials Technologies,2020,5(9):2000288.
|
[34] |
陶颖, 祁宁, 王波, 等. 氧化铟/聚(3, 4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究[J]. 物理学报, 2018, 67(19):197201. doi: 10.7498/aps.67.20180382
TAO Ying, QI Ning, WANG Bo, et al. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites[J]. Acta Physical Sinica,2018,67(19):197201(in Chinese). doi: 10.7498/aps.67.20180382
|
[35] |
XU K L, CHEN G M, QIU D. Convenient construction of poly(3, 4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance[J]. Journal of Materials Chemistry A,2013,1(40):12395-12399. doi: 10.1039/c3ta12691a
|
[36] |
FU P J, XU K L, SONG H Z, et al. Preparation, stability and rheology of polyacrylamide/pristine layered double hydroxide nanocomposites[J]. Journal of Materials Che-mistry,2010,20(19):3869-3876. doi: 10.1039/b927391c
|
[37] |
HARUNA M A, PERVAIZ S, HU Z L, et al. Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet[J]. Journal of Applied Polymer Science,2019,136(22):47582. doi: 10.1002/app.47582
|
[38] |
XU K L, CHEN G M, QIU D. In situ chemical oxidative polymerization preparation of poly(3, 4-ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance[J]. Chemistry, An Asian Journal,2015,10(5):1225-1231. doi: 10.1002/asia.201500066
|
[39] |
KSHIRSAGAR A S, HIRAGOND C, DEY A, et al. Band engi-neered I/III/V-VI binary metal selenide/MWCNT/PANI nanocomposites for potential poom temperature thermoelectric applications[J]. ACS Applied Energy Materials,2019,2(4):2680-2691. doi: 10.1021/acsaem.9b00013
|
[40] |
ZHANG Z, CHEN G M, WANG H F, et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry, An Asian journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
|
[41] |
RDEST M, JANAS D. Effective doping of single-walled carbon nanotubes with polyethyleneimine[J]. Materials,2020,14(1):65. doi: 10.3390/ma14010065
|
[42] |
ZHANG Y C, ZHANG Q C, CHEN G M. Carbon and carbon composites for thermoelectric applications[J]. Carbon Energy,2020,2(3):408-436. doi: 10.1002/cey2.68
|
[43] |
GAO C Y, CHEN G M. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials[J]. Composites Science and Technology, 2016, 124: 52-70.
|
[44] |
TZOUNIS L, GARTNER T, LIEBSCHER M, et al. Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites[J]. Polymer,2014,55(21):5381-5388. doi: 10.1016/j.polymer.2014.08.048
|
[45] |
BADR H, YOUSSEF M A, ELSALAM H S A, et al. Thermoelectric behaviour of polyvinyl acetate/CNT composites[C]//146th Annual Meeting & Exhibition Supplemental Proceedings. San Diego: Springer International Publishing, 2017: 287-294.
|
[46] |
IGNATIOUS V, RAVEENDRAN N, PRABHAKARAN A, et al. MWCNT/thienothiophene based all-organic thermoelectric composites: Enhanced performance by realigning of the Fermi level through doping[J]. Chemical Engineering Journal, 2021, 409: 128294.
|
[47] |
CHOI J W, HAN M G, KIM S Y, et al. Poly(3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Metals,2004,141(3):293-299. doi: 10.1016/S0379-6779(03)00419-3
|
[48] |
GARREAU S, LOUARN G, BUISSON J P, et al. In situ spectroelectrochemical raman studies of poly(3, 4-ethylenedioxythiophene) (PEDT)[J]. Macromolecules,1999,32(20):6807-6812. doi: 10.1021/ma9905674
|
[49] |
LIU Y L, CHEN W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules,2007,40(25):8881-8886. doi: 10.1021/ma071700s
|
[50] |
BASKARAN D, MAYS J W, BRATCHER M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chemistry of Materials,2005,17(13):3389-3397. doi: 10.1021/cm047866e
|
[51] |
MENG C Z, LIU C H, FAN S S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks[J]. Advanced Materials,2010,22(4):535-539. doi: 10.1002/adma.200902221
|
[52] |
ZHENG Y, ZENG H N, ZHU Q, et al. Recent advances in conducting poly(3, 4-ethylenedioxythiophene): polystyrene sulfonate hybrids for thermoelectric applications[J]. Journal of Materials Chemistry C,2018,6(33):8858-8873. doi: 10.1039/C8TC01900B
|
[53] |
王少阶, 陈志权, 王波, 等. 应用正电子谱学[M]. 武汉: 湖北科学技术出版社, 2008.
WANG Shaojie, CHEN Zhiquan, WANG Bo, et al. Applied positron spectroscopy[M]. Wuhan: Hubei Science and Technology Press, 2008(in Chinese).
|
[54] |
LI C Y, ZHAO B, ZHOU B, et al. Effects of electrical conductivity on the formation and annihilation of positronium in porous materials[J]. Physical Chemistry Chemical Physics,2017,19(11):7659-7667. doi: 10.1039/C6CP07483A
|
[55] |
YAO Q, CHEN L D, ZHANG W Q, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano,2010,4(4):2445-2451. doi: 10.1021/nn1002562
|
[56] |
YU C, KIM Y S, KIM D, et al. Thermoelectric behavior of segregated-network polymer nanocomposites[J]. Nano Letters,2008,8(12):4428-4432. doi: 10.1021/nl802345s
|
[57] |
YAO Q, WANG Q, WANG L M, et al. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering[J]. Energy & Environmental Science,2014,7(11):3801-3807.
|