Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI Chongyang, SONG Xiaoyong, CHEN Lili, et al. Microstructure and thermoelectric properties of MWCNT/PEDOT composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 860-871. doi: 10.13801/j.cnki.fhclxb.20220307.002
Citation: LI Chongyang, SONG Xiaoyong, CHEN Lili, et al. Microstructure and thermoelectric properties of MWCNT/PEDOT composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 860-871. doi: 10.13801/j.cnki.fhclxb.20220307.002

Microstructure and thermoelectric properties of MWCNT/PEDOT composites

doi: 10.13801/j.cnki.fhclxb.20220307.002
  • Received Date: 2022-01-20
  • Accepted Date: 2022-02-26
  • Rev Recd Date: 2022-02-16
  • Available Online: 2022-03-09
  • Publish Date: 2023-02-15
  • Thermoelectric conversion technology can convert a large amount of waste heat energy into electric energy for reuse. It is a green energy conversion technology, which can effectively improve energy utilization, and alleviate the energy crisis and environmental pollution caused by the over-exploitation and utilization of coal, oil and other major fossil energy. Therefore, it has been widely concerned by researchers and has become a research hotspot recently. Base on this, one of the more excellent electronic conductive polymers, poly(3, 4-ethylenedioxythiophene) (PEDOT), was used as the research subject, and multiwall carbon nanotubes (MWCNT)/PEDOT composites were synthesized by chemical in situ oxidation synthesis method. X-ray diffraction, raman spectroscopy, transmission electron microscope and positron annihilation lifetime spectroscopy were used to study the microstructure of the composites, the results of which indicate that when the MWCNT content is higher than 24.9wt%, the MWCNTs of MWCNT/PEDOT composites aggregate seriously and are badly dispersed. Thermal and electrical measurements of MWCNT/PEDOT composites show that their electrical conductivity increases sustainably with the MWCNT content increasing. For the pure PEDOT sample, the electrical conductivity is only 7.5 S·m−1, and the electrical conductivity of MWCNT/PEDOT sample is up to 566.59 S·m−1 at MWCNT content of 30.1wt%, the increase is nearly 76 times. Meanwhile, the power factor of the composites increases rapidly from 14.5×10−4 to 814.3×10−4 μW·(m·K2)−1 with the increase of 56, which is mainly due to the high conductivity of MWCNT and the π-π interaction between PEDOT molecular chain and MWCNT. With the increase of MWCNT content, the decrease of the first lifetime τ1 of positron annihilation in materials of PAL test confirms that the interface between MWCNT and PEDOT became smaller and the interfacial interaction between the MWCNT and PEDOT was weakened. As a result, the thermal conductivity of the composite exhibits a bit increase with the addition of MWCNT, but it was far lower than the increase of power factor. Eventually, the thermoelectric figure of merit (ZT, an index or measure of the thermoelectric properties of a thermoelectric material) value of the MWCNT/PEDOT composites increases from 0.015×10−4 to 0.45×10−4, that's a nearly 30-fold increase. In summary, the doped MWCNT of higher conductivity can greatly enhance the thermoelectric properties of electronic conductive polymers of PEDOT.


  • loading
  • [1]
    CHATTERJEE K, GHOSH T K. Thermoelectric materials for textile applications[J]. Molecules,2021,26(11):3154-3165. doi: 10.3390/molecules26113154
    PARK D, KIM M, KIM J. High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting[J]. Journal of Alloys and Compounds,2021,884:161098. doi: 10.1016/j.jallcom.2021.161098
    ZHOU X Y, YAN Y C, LU X, et al. Routes for high-perfor-mance thermoelectric materials[J]. Materials Today,2018,21(9):974-988. doi: 10.1016/j.mattod.2018.03.039
    BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science,2008,321(5895):1457-1461. doi: 10.1126/science.1158899
    BAKKER F L, SLACHTER A, ADAM J P, et al. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves[J]. Physical Review Letters,2010,105(13):136601. doi: 10.1103/PhysRevLett.105.136601
    YANG J H, CAILLAT T. Thermoelectric materials for space and automotive power generation[J]. MRS Bulletin,2006,31(3):224-229. doi: 10.1557/mrs2006.49
    CHEN Z G, HAN G, YANG L, et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science-Materials International,2012,22(6):535-549. doi: 10.1016/j.pnsc.2012.11.011
    SHI X L, ZHENG K, HONG M, et al. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering[J]. Chemical Science,2018,9(37):7376-7389. doi: 10.1039/C8SC02397B
    SHI X L, ZHENG K, LIU W D, et al. Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects[J]. Advanced Energy Materials,2018,8(21):1800775. doi: 10.1002/aenm.201800775
    SNYDER G J, TOBBER E S. Complex thermoelectric materials[J]. Nature Materials,2008,7(2):105-114. doi: 10.1038/nmat2090
    ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric Fig. of merit in SnSe crystals[J]. Nature,2014,508(7496):373-377. doi: 10.1038/nature13184
    SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angewandte Chemie International Edition,2009,48(46):8616-8639. doi: 10.1002/anie.200900598
    MCGRAIL B T, SEHIRLIOGLU A, PENTZER E. Polymer composites for thermoelectric applications[J]. Angewandte Chemie International Edition,2015,54(6):1710-1723. doi: 10.1002/anie.201408431
    VENKATASUBRAMANIAN R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Physical Review B,2000,61(4):3091-3097. doi: 10.1103/PhysRevB.61.3091
    TIAN Z, GARG J, ESFARJANI K, et al. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations[J]. Physical Review B, 2012, 85(18): 184303.
    王艳, 陈南迪, 杨陈, 等. 二维材料XTe2(X = Pd, Pt)热电性能的第一性原理计算[J]. 物理学报, 2021, 70(11):116301. doi: 10.7498/aps.70.20201939

    WANG Yan, CHEN Nandi, YANG Chen, et al. Thermoelectric transport properties of XTe2 (X = Pd, Pt) two-dimensional materials calculations[J]. Acta Physics Sinica,2021,70(11):116301(in Chinese). doi: 10.7498/aps.70.20201939
    HE H F, LI X F, CHEN Z Q, et al. Interplay between point defects and thermal conductivity of chemically synthe-sized Bi2Te3 nanocrystals studied by positron annihilation[J]. The Journal of Physical Chemistry C,2014,118(38):22389-22394. doi: 10.1021/jp508085a
    WU D, ZHAO L D, HAO S Q, et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. Journal of the American Chemical Society,2014,136(32):11412-11419. doi: 10.1021/ja504896a
    范人杰, 江先燕, 陶奇睿, 等. In1+xTe化合物的结构及热电性能研究[J]. 物理学报, 2021, 70(13): 137102.

    FAN Renjie, JIANG Xianyan, TAO Qirui, et al. Structure and thermoelectric properties of In1+xTe compounds[I]. Acta Physical Sinica, 2021, 70(13): 137102(in Chinese).
    WANG F Q, ZHANG S H, YU J B, et al. Thermoelectric pro-perties of single-layered SnSe sheet[J]. Nanoscale,2015,7(38):15962-15970. doi: 10.1039/C5NR03813H
    王作成, 李涵, 苏贤礼, 等. In0.3Co4Sb12-xSex方钴矿热电材料的制备和热电性能[J]. 物理学报, 2011, 60(2):027202. doi: 10.7498/aps.60.027202

    WANG Zuocheng, LI Han, SU Xianli, et al. Synthesis and thermoelectric properties of thermoelectric materials of the skutterudites In0.3Co4Sb12-xSex[J]. Acta Physical Sinica,2011,60(2):027202(in Chinese). doi: 10.7498/aps.60.027202
    APPEL O, GELBSTEIN Y. A comparison between the effects of Sb and Bi doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn half-heusler alloy[J]. Jour-nal of Electronic Materials,2013,43(6):1976-1982.
    ZHOU H, CHUA M H, ZHU Q, et al. High-performance PEDOT : PSS-based thermoelectric composites[J]. Compo-sites Communications, 2021, 27: 100877.
    HAN J F, GANLEY C, HU Q, et al. Using preformed meisenheimer complexes as dopants for n-type organic thermoelectrics with high Seebeck coefficients and power factors[J]. Advanced Functional Materials,2021,31(18):2010567. doi: 10.1002/adfm.202010567
    DENG L, CHEN G M. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance[J]. Nano Energy, 2021, 80: 105448.
    KAUL P B, DAY K A, ABRAMSON A R. Application of the three omega method for the thermal conductivity measurement of polyaniline[J]. Journal of Applied Physics,2007,101(8):083507. doi: 10.1063/1.2714650
    刘祎, 张荔. 聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐基柔性复合热电材料研究进展[J]. 复合材料学报, 2021, 38(2):287-297.

    LIU Wei, ZHANG Li. Recent progress on poly(3, 4-ethyl-enedioxythiophene): polystyrenesulfonate-based flexible composite thermoelectric materials[J]. Acta Materiae Compositae Sinica,2021,38(2):287-297(in Chinese).
    KIM D, KIM Y, CHOI K, et al. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3, 4-ethylenedioxythiophene) poly(styrenesulfonate)[J]. ACS Nano,2010,4(1):513-523. doi: 10.1021/nn9013577
    SCHOLDT M, DO H, LANG J, et al. Organic semiconductors for thermoelectric applications[J]. Journal of Eelctro-nic Materials,2010,39(9):1589-1592. doi: 10.1007/s11664-010-1271-8
    LIU C C, XU J K, LU B Y, et al. Simultaneous increases in electrical conductivity and Seebeck coefficient of PEDOT: PSS films by adding ionic liquids into a polymer solution[J]. Journal of Electronic Materials,2012,41(4):639-645. doi: 10.1007/s11664-012-1942-8
    LU W, LAI X F, LIU Q L, et al. Enhanced thermoelectric performance of BiSe by Sn doping and ball milling[J]. Ceramics International,2021,47(18):26375-26382. doi: 10.1016/j.ceramint.2021.06.048
    LI H B, ZONG Y D, DING Q J, et al. Paper-based thermoelectric generator based on multi-walled carbon nano-tube/carboxylated nanocellulose[J]. Journal of Power Sources,2021,500(15):229992.
    CHEN R S, TANG J H, YAN Y J, et al. Solvent-mediated n-type doping of SWCNTs to achieve superior thermoelectric power factor[J]. Advanced Materials Technologies,2020,5(9):2000288.
    陶颖, 祁宁, 王波, 等. 氧化铟/聚(3, 4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究[J]. 物理学报, 2018, 67(19):197201. doi: 10.7498/aps.67.20180382

    TAO Ying, QI Ning, WANG Bo, et al. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites[J]. Acta Physical Sinica,2018,67(19):197201(in Chinese). doi: 10.7498/aps.67.20180382
    XU K L, CHEN G M, QIU D. Convenient construction of poly(3, 4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance[J]. Journal of Materials Chemistry A,2013,1(40):12395-12399. doi: 10.1039/c3ta12691a
    FU P J, XU K L, SONG H Z, et al. Preparation, stability and rheology of polyacrylamide/pristine layered double hydroxide nanocomposites[J]. Journal of Materials Che-mistry,2010,20(19):3869-3876. doi: 10.1039/b927391c
    HARUNA M A, PERVAIZ S, HU Z L, et al. Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet[J]. Journal of Applied Polymer Science,2019,136(22):47582. doi: 10.1002/app.47582
    XU K L, CHEN G M, QIU D. In situ chemical oxidative polymerization preparation of poly(3, 4-ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance[J]. Chemistry, An Asian Journal,2015,10(5):1225-1231. doi: 10.1002/asia.201500066
    KSHIRSAGAR A S, HIRAGOND C, DEY A, et al. Band engi-neered I/III/V-VI binary metal selenide/MWCNT/PANI nanocomposites for potential poom temperature thermoelectric applications[J]. ACS Applied Energy Materials,2019,2(4):2680-2691. doi: 10.1021/acsaem.9b00013
    ZHANG Z, CHEN G M, WANG H F, et al. Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property[J]. Chemistry, An Asian journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
    RDEST M, JANAS D. Effective doping of single-walled carbon nanotubes with polyethyleneimine[J]. Materials,2020,14(1):65. doi: 10.3390/ma14010065
    ZHANG Y C, ZHANG Q C, CHEN G M. Carbon and carbon composites for thermoelectric applications[J]. Carbon Energy,2020,2(3):408-436. doi: 10.1002/cey2.68
    GAO C Y, CHEN G M. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials[J]. Composites Science and Technology, 2016, 124: 52-70.
    TZOUNIS L, GARTNER T, LIEBSCHER M, et al. Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites[J]. Polymer,2014,55(21):5381-5388. doi: 10.1016/j.polymer.2014.08.048
    BADR H, YOUSSEF M A, ELSALAM H S A, et al. Thermoelectric behaviour of polyvinyl acetate/CNT composites[C]//146th Annual Meeting & Exhibition Supplemental Proceedings. San Diego: Springer International Publishing, 2017: 287-294.
    IGNATIOUS V, RAVEENDRAN N, PRABHAKARAN A, et al. MWCNT/thienothiophene based all-organic thermoelectric composites: Enhanced performance by realigning of the Fermi level through doping[J]. Chemical Engineering Journal, 2021, 409: 128294.
    CHOI J W, HAN M G, KIM S Y, et al. Poly(3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Metals,2004,141(3):293-299. doi: 10.1016/S0379-6779(03)00419-3
    GARREAU S, LOUARN G, BUISSON J P, et al. In situ spectroelectrochemical raman studies of poly(3, 4-ethylenedioxythiophene) (PEDT)[J]. Macromolecules,1999,32(20):6807-6812. doi: 10.1021/ma9905674
    LIU Y L, CHEN W H. Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization[J]. Macromolecules,2007,40(25):8881-8886. doi: 10.1021/ma071700s
    BASKARAN D, MAYS J W, BRATCHER M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chemistry of Materials,2005,17(13):3389-3397. doi: 10.1021/cm047866e
    MENG C Z, LIU C H, FAN S S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks[J]. Advanced Materials,2010,22(4):535-539. doi: 10.1002/adma.200902221
    ZHENG Y, ZENG H N, ZHU Q, et al. Recent advances in conducting poly(3, 4-ethylenedioxythiophene): polystyrene sulfonate hybrids for thermoelectric applications[J]. Journal of Materials Chemistry C,2018,6(33):8858-8873. doi: 10.1039/C8TC01900B
    王少阶, 陈志权, 王波, 等. 应用正电子谱学[M]. 武汉: 湖北科学技术出版社, 2008.

    WANG Shaojie, CHEN Zhiquan, WANG Bo, et al. Applied positron spectroscopy[M]. Wuhan: Hubei Science and Technology Press, 2008(in Chinese).
    LI C Y, ZHAO B, ZHOU B, et al. Effects of electrical conductivity on the formation and annihilation of positronium in porous materials[J]. Physical Chemistry Chemical Physics,2017,19(11):7659-7667. doi: 10.1039/C6CP07483A
    YAO Q, CHEN L D, ZHANG W Q, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano,2010,4(4):2445-2451. doi: 10.1021/nn1002562
    YU C, KIM Y S, KIM D, et al. Thermoelectric behavior of segregated-network polymer nanocomposites[J]. Nano Letters,2008,8(12):4428-4432. doi: 10.1021/nl802345s
    YAO Q, WANG Q, WANG L M, et al. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering[J]. Energy & Environmental Science,2014,7(11):3801-3807.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (575) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint