Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WU Peng, NAI Xueying, LIU Xin, et al. Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 334-341. doi: 10.13801/j.cnki.fhclxb.20220303.003
Citation: WU Peng, NAI Xueying, LIU Xin, et al. Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 334-341. doi: 10.13801/j.cnki.fhclxb.20220303.003

Fabrication of high and low adhesive superhydrophobic coatings with magnesium oxysulfate whiskers and SiO2 nanoparticles

doi: 10.13801/j.cnki.fhclxb.20220303.003
Funds:  Qinghai Provincial Science and Technology Department Project (2019-ZJ-7029)
  • Received Date: 2021-12-21
  • Accepted Date: 2022-02-19
  • Rev Recd Date: 2022-02-04
  • Available Online: 2022-03-07
  • Publish Date: 2023-01-15
  • Superhydrophobic materials have been received extensive attention due to their unique properties and wide applications. In this work, two kinds of superhydrophobic coatings were successfully fabricated with magnesium oxysulfate whiskers (MOSWs) and nano-silica. Firstly, surface modifications for MOSWs and nano-silica (with size of 50 nm and 500 nm) were carried out to reduce their surface energy. Then, surface roughness was constructed by mixing MOSWs and nano-silica based on a mixture design approach, which was studied using contact angle, sliding angle and average roughness (Ra) as response variables to illustrate causality among morphology, size and mixing ratio. Furthermore, the adhesive property of superhydrophobic coatings to water droplets was illustrated. The influences of roughness on superhydrophobic properties were investigated in detail. Based on the obtained results, superhydrophobic coatings with different adhesive properties were fabricated. The results show that the high adhesive superhydrophobic coating can be obtained using MOSWs as the raw material, whose contact angle is about 152.59°, and water droplets do not drip when the coating is turned upside down. The low adhesive superhydrophobic coating can be prepared by mixing MOSWs and 50 nm silica with the same mass fraction, whose contact angle and sliding angle are about 163.25° and 0°, respectively. Importantly, the excellent properties can be obtained for the low adhesive coating, when the average roughness (Ra) is between 5-10 μm.

     

  • loading
  • [1]
    LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A,2017,5(1):31-55. doi: 10.1039/C6TA07984A
    [2]
    赖跃坤, 陈忠, 林昌健. 超疏水表面黏附性的研究进展[J]. 中国科学: 化学, 2011, 41(4):609-628. doi: 10.1360/032011-11

    LAI Yuekun, CHEN Zhong, LIN Changjian. A review on the recent progress in superhydrophobic surfaces with special adhesions[J]. Scientia Sinica (Chimica),2011,41(4):609-628(in Chinese). doi: 10.1360/032011-11
    [3]
    JIN M H, FENG X J, FENG L, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Advanced Materials,2005,17(16):1977-1981. doi: 10.1002/adma.200401726
    [4]
    LI X P, SUN Y L, XU Y Y, et al. UV-resistant and thermally stable superhydrophobic CeO2 nanotubes with high water adhesion[J]. Small,2018,14(27):1801040. doi: 10.1002/smll.201801040
    [5]
    WANG M K, ZI Y, ZHU J, et al. Construction of superhydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications[J]. Chemical Engineering Journal,2021,417:129265. doi: 10.1016/j.cej.2021.129265
    [6]
    刘刚, 欧宝立, 赵欣欣等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备[J]. 复合材料学报, 2021, 38(10):3236-3245.

    LIU Gang, OU Baoli, ZHAO Xinxin, et al. Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials[J]. Acta Materiae Compositae Sinica,2021,38(10):3236-3245(in Chinese).
    [7]
    WAN Y L, YAN C D, YU H D, et al. Anti-icing performance of superhydrophobic surface with square-ring structure prepared by nanosecond laser[J]. Advanced Engineering Materials,2021,23(9):2100190. doi: 10.1002/adem.202100190
    [8]
    AHUJA D, DHIMAN S, RATTAN G, et al. Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation[J]. Journal of Environmental Chemical Engineering,2021,9(2):105063. doi: 10.1016/j.jece.2021.105063
    [9]
    WANG J P, WU Y L, ZHANG D G, et al. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,587:124331. doi: 10.1016/j.colsurfa.2019.124331
    [10]
    VANITHAKUMARI S C, ATHULYA V, GEORGE R P, et al. Fabrication of superhydrophobic and self cleaning PVA-silica fiber coating on 304L SS surfaces by electrospinning[J]. Journal of Applied Polymer Science,2021,138(13):50118. doi: 10.1002/app.50118
    [11]
    WANG S Q, XUE Y P, BAN C L, et al. Fabrication of robust tungsten carbide particles reinforced Co-Ni superhydrophobic composite coating by electrochemical deposition[J]. Surface & Coatings Technology,2020,385:125390. doi: 10.1016/j.surfcoat.2020.125390
    [12]
    WANG Y T, PENG H K, LI T T, et al. Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,141:106119. doi: 10.1016/j.compositesa.2020.106199
    [13]
    LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science,2019,533:198-206. doi: 10.1016/j.jcis.2018.08.060
    [14]
    ZHANG C J, LIANG F H, ZHANG W, et al. Constructing mechanochemical durable and self-healing superhydrophobic surfaces[J]. ACS Omega,2020,5(2):986-994. doi: 10.1021/acsomega.9b03912
    [15]
    XUE C H, ZHAO L L, GUO X J, et al. Mechanically durable superhydrophobic surfaces by binding polystyene nanoparticles on fibers with aluminum phosphate followed by hydrophobization[J]. Chemical Engineering Journal,2020,396:125231. doi: 10.1016/j.cej.2020.125231
    [16]
    VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials,2011,23(5):673-678. doi: 10.1002/adma.201003129
    [17]
    李战胜. 基于纳米二氧化硅的防冰疏水涂层的制备及性能研究[J]. 电镀与涂饰, 2020, 39(4):201-205.

    LI Zhansheng. Preparation of anti-icing hydrophobic coating based on nano-silica and study on its properties[J]. Electroplating & Finishing,2020,39(4):201-205(in Chinese).
    [18]
    JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie International Edition,2004,43(33):4338-4341. doi: 10.1002/anie.200460333
    [19]
    WANG T R, ZHAO Y Y. Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications[J]. Food Hydrocolloids,2021,120:106877. doi: 10.1016/j.foodhyd.2021.106877
    [20]
    GONG G M, WU J T, LIU J G, et al. Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability[J]. Journal of Materials Chemistry,2012,22(17):8257-8262. doi: 10.1039/c2jm16503a
    [21]
    LI Y, ZHU X T, ZHOU X Y, et al. A facile way to fabricate a superamphiphobic surface[J]. Applied Physics A: Materials Science & Processing,2014,115(3):765-770. doi: 10.1007/s00339-014-8438-8
    [22]
    WANG S L, ZHANG J, YU X Q, et al. Condensed dewdrops self-ejecting on sprayable superhydrophobic CNT/SiO2 composite coating[J]. RSC Advances,2017,7(44):27574-27577. doi: 10.1039/C7RA04102K
    [23]
    陆文卿, 王国建. 水性防火阻尼双功能涂料的制备[J]. 涂料工业, 2018, 48(6):24-30. doi: 10.12020/j.issn.0253-4312.2018.6.24

    LU Wenqing, WANG Guojian. Preparation of waterborne fire retardant and damping dual functional coatings[J]. Paint & Coatings Industry,2018,48(6):24-30(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.6.24
    [24]
    DANG L, NAI X Y, LIU X, et al. Mechanical and flame retardant properties of isotactic polypropylene/magnesium oxysulfate whisker composite[J]. Journal of Thermoplastic Composite Materials,2018,31(4):514-534. doi: 10.1177/0892705717713073
    [25]
    ZHENG F, DENG H T, ZHAO X J, et al. Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: Fluorine-enriching surface and superhydrophobic state with high adhesion to water[J]. Journal of Colloid and Interface Science,2014,421:49-55. doi: 10.1016/j.jcis.2014.01.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (846) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return