Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006
Citation: WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006

g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes

doi: 10.13801/j.cnki.fhclxb.20220225.006
Funds:  National Natural Science Foundation of China(21406058); Natural Science Foundation of Hunan Province (2021JJ30237)
  • Received Date: 2021-12-17
  • Accepted Date: 2022-01-22
  • Rev Recd Date: 2022-01-14
  • Available Online: 2022-02-28
  • Publish Date: 2023-01-15
  • In order to expand the sunlight absorption range of BiOCl and obtain more efficient photocatalyst, Graphite phase carbon nitride (g-C3N4)/BiOCl (2D/2D) composite photocatalyst was prepared by hydrothermal method and characterized in detail. The results of structural and morphology characterization show that BiOCl nanosheets are deposited on the layered g-C3N4 surface to form 2D/2D face-face composite structure. The analysis of photoelectric chemical properties shows that the formation of heterostructure can effectively expand the frequency range of light absorption and promote the separation and migration of photocarriers, which is conducive to the improvement of photocatalytic performance. The results of photocatalytic degradation of RhB by xenon lamp (500 W) show that the photocatalytic degradation activity of g-C3N4/BiOCl heterojunction is much higher than that of g-C3N4 and BiOCl alone. Among them, 9wt%g-C3N4/BiOCl shows the most superior photocatalytic activity, and the degradation rate of RhB is 94% within 180 min, and the apparent rate constant Kapp value of 9wt%g-C3N4/BiOCl is 5.7 and 3.6 times that of g-C3N4 and BiOCl. At the same time, the photocatalytic mechanism of g-C3N4/BiOCl heterojunction was studied, and the photocatalytic degradation mechanism of RhB under dye sensitization was proposed by combining the electronic structure of the composite catalyst and free radical capture experiment.

     

  • loading
  • [1]
    LI M L, ZHANG L X, WU M Y, et al. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations[J]. Nano Energy,2016,19:145-155. doi: 10.1016/j.nanoen.2015.11.010
    [2]
    CHEN C S, MEI W, WANG C, et al. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight[J]. Journal of Alloys and Compounds,2020,826:154122. doi: 10.1016/j.jallcom.2020.154122
    [3]
    CHEN L J, SHI L, WU J B, et al. N-SrTiO3 nanoparticle/BiOBr nanosheet as 0D/2D heterojunctions for enhanced visible light photocatalytic dye degradation[J]. Materials Science and Engineering: B,2020,261:114667. doi: 10.1016/j.mseb.2020.114667
    [4]
    MENG X C, ZHANG Z S. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches[J]. Journal of Molecular Catalysis A: Chemical,2016,423:533-549. doi: 10.1016/j.molcata.2016.07.030
    [5]
    WANG Q Z, HUI J, HUANG T J, et al. The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes[J]. Materials Science in Semiconductor Processing,2014,17:87-93. doi: 10.1016/j.mssp.2013.08.018
    [6]
    ZHANG X, WANG X B, WANG L W, et al. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets[J]. Applied Materials and Interfaces,2014,6(10):7766-7772. doi: 10.1021/am5010392
    [7]
    CHEN H B, YU X, ZHU Y, et al. Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation[J]. Journal of Nanoparticl Research,2016,18:225. doi: 10.1007/s11051-016-3529-4
    [8]
    CHEN F, LIU H Q, BAGWASI S, et al. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry,2010,215(1):76-80. doi: 10.1016/j.jphotochem.2010.07.026
    [9]
    LI B X, SHAO L Z, WANG R S, et al. Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for selective oxidation of aromatic alcohols[J]. Journal of Materials Chemistry A,2018,6(15):6344-6355. doi: 10.1039/C8TA00449H
    [10]
    YU C L, HE H B, LIU X Q, et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants[J]. Chinese Journal of Catalysis,2019,40(8):1212-1221. doi: 10.1016/S1872-2067(19)63359-0
    [11]
    PAN J B, LIU J J, ZUO S L, et al. Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity[J]. Materials Research Bulletin,2018,103:216-224. doi: 10.1016/j.materresbull.2018.03.043
    [12]
    PAN J B, LIU J J, ZUO S L, et al. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination[J]. Applied Surface Science,2018,444:177-186. doi: 10.1016/j.apsusc.2018.01.189
    [13]
    WANG Q, LI P J, ZHANG Z, et al. Kinetics and mechanism insights into the photodegradation of tetracycline hydrochloride and ofloxacin mixed antibiotics with the flower-like BiOCl/TiO2 heterojunction[J]. Journal of Photochemistry and Photobiology A: Chemistry,2019,378:114-124. doi: 10.1016/j.jphotochem.2019.04.028
    [14]
    ZHAO S, ZHANG Y W, ZHOU Y M, et al. Reactable polyelectrolyte-assisted synthesis of BiOCl with enhanced photocatalytic activity[J]. ACS Sustainable Chemistry and Engineering,2017,5(2):1416-1424. doi: 10.1021/acssuschemeng.6b01987
    [15]
    HU J L, FAN W J, UE W Q, et al. Insights into the photosensitivity activity of BiOCl under visible light irradiation[J]. Applied Catalysis B: Environmental,2014,158-159:182-189. doi: 10.1016/j.apcatb.2014.04.019
    [16]
    ONG W J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter[J]. Frontiers in Materials,2017,4:11. doi: 10.3389/fmats.2017.00011
    [17]
    TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy,2017,38:72-81. doi: 10.1016/j.nanoen.2017.05.038
    [18]
    ZHANG Y, LIN L H, WANG B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition,2015,54(44):12868-12884. doi: 10.1002/anie.201501788
    [19]
    LI J Y, CUI W, SUN Y J, et al. Directional electrons delivery via vertical channel between g-C3N4 layers promoting the photocatalysis efficiency[J]. Journal of Materials Chemistry A,2017,5(19):9358-9364. doi: 10.1039/C7TA02183F
    [20]
    CHEN Y, WANG X C. Template-free synthesis of hollow g-C3N4 polymer with vesicle structure for enhanced photocatalytic water splitting[J]. The Journal of Physical Chemistry,2018,122(7):3786-3793. doi: 10.1021/acs.jpcc.7b12496
    [21]
    LIANG D, HUANG Y L, WU F, et al. In situ synthesis of g-C3N4/TiO2 with {001} and {101} facets coexposed for water remediation[J]. Applied Surface Science,2019,487:322-334. doi: 10.1016/j.apsusc.2019.05.088
    [22]
    ZHU X, WANG Y T, GUO Y, et al. Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance[J]. Applied Surface Science,2021,544:148872. doi: 10.1016/j.apsusc.2020.148872
    [23]
    ZHAN S, ZHOU F, HUANG N B, et al. g-C3N4/ZnWO4 films: Preparation and its enhanced photocatalytic decomposition of phenol in UV[J]. Applied Surface Science,2015,358:328-335. doi: 10.1016/j.apsusc.2015.07.180
    [24]
    ZHANG L, NIU C G, ZHAO X F, et al. Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: A superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell[J]. ACS Applied Materials and Interfaces,2018,10(46):39723-39734. doi: 10.1021/acsami.8b14227
    [25]
    ZOU Y J, SHI J W, MA D D, et al. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal,2017,322:435-444. doi: 10.1016/j.cej.2017.04.056
    [26]
    HUANG Z F, SONG J J, PAN L, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution[J]. Nano Energy,2015,12:646-656. doi: 10.1016/j.nanoen.2015.01.043
    [27]
    SHE X J, WU J J, ZHONG J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency[J]. Nano Energy,2016,27:138-146. doi: 10.1016/j.nanoen.2016.06.042
    [28]
    MA D M, ZHONG J B, LI J Z, rt al. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight[J]. Applied Surface Science,2018,443:497-505. doi: 10.1016/j.apsusc.2018.03.018
    [29]
    HU T P, YANG Y, DAI K, et al. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Applied Surface Science,2018,456:473-481. doi: 10.1016/j.apsusc.2018.06.186
    [30]
    CHANG F, WU F Y, YAN W J, et al. Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: Construction, characterization, and sonocatalytic degradation performance[J]. Ultrason Sonochem,2019,50:105-113. doi: 10.1016/j.ultsonch.2018.09.005
    [31]
    LIU C, ZHOU J L, SU J Z, et al. Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance[J]. Applied Catalysis B: Environmental,2019,241:506-513. doi: 10.1016/j.apcatb.2018.09.060
    [32]
    GAO J C, GAO Y, SUI Z Y, et al. Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline[J]. Journal of Alloys and Compounds,2018,732:43-51. doi: 10.1016/j.jallcom.2017.10.092
    [33]
    ZHU M Y, LIU Q, CHEN W, et al. Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-scheme charge transfer of N-GQDs: Simultaneous band gap narrowing and carrier lifetime prolonging[J]. ACS Applied Materials and Interfaces,2017,9(44):38832-38841. doi: 10.1021/acsami.7b14412
    [34]
    ZHANG G G, HUANG C J, WANG X C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation[J]. Small,2015,11(9-10):1215-1221. doi: 10.1002/smll.201402636
    [35]
    JIN X Y, GUAN Q M, TIAN T, et al. In2O3/boron doped g-C3N4 heterojunction catalysts with remarkably enhanced visible-light photocatalytic efficiencies[J]. Applied Surface Science,2020,504:144241. doi: 10.1016/j.apsusc.2019.144241
    [36]
    TAO R, LI X H, LI X W, et al. TiO2/SrTiO3/g-C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale,2020,12(15):8320-8329. doi: 10.1039/D0NR00219D
    [37]
    GAO X Y, PENG W, TANG G B, et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys and Compounds,2018,757:455-465. doi: 10.1016/j.jallcom.2018.05.081
    [38]
    XIAO Y, PENG Z Y, ZHANG S, et al. Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: In-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance[J]. Journal of Materials Science,2019,54:9573-9590. doi: 10.1007/s10853-019-03401-2
    [39]
    GUO L A, YOU Y, HUANG H W, et al. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science,2020,568:139-147. doi: 10.1016/j.jcis.2020.02.025
    [40]
    DENG C H, HU H M, YU H, et al. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Materials Science,2021,56:2994-3010. doi: 10.1007/s10853-020-05427-3
    [41]
    GUO S E, DENG Z P, LI M X, et al. Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution[J]. Angewandte Chemie,2016,128(5):1862-1866. doi: 10.1002/ange.201508505
    [42]
    RAN J R, MA T Y, GAO G P, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy and Environmental Science,2015,8(12):3708-3717. doi: 10.1039/C5EE02650D
    [43]
    PENG B Y, ZHANG S S, YANG S Y, et al. Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation[J]. Materials Research Bulletin,2014,56:19-24. doi: 10.1016/j.materresbull.2014.04.042
    [44]
    BING X M, JIAN X Y, CHU J H, et al. Hierarchically porous BiOBr/ZnAl1.8Fe0.2O4 and its excellent adsorption and photocatalysis activity[J]. Materials Research Bulletin,2019,110:1-12. doi: 10.1016/j.materresbull.2018.10.006
    [45]
    ZHENG J H, ZHANG L. Incorporation of CoO nanoparticles in 3D marigoldflower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Applied Catalysis B: Environmental,2018,237:1-8. doi: 10.1016/j.apcatb.2018.05.060
    [46]
    WANG J L, YU Y, ZHANG L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light[J]. Applied Catalysis B: Environmental,2013,136-137:112-121. doi: 10.1016/j.apcatb.2013.02.009
    [47]
    CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutans under visible-light irradiation[J]. Chemical Society Reviews,2010,39(11):4206-4219. doi: 10.1039/b921692h
    [48]
    FUJISHIMA A, ZHANG X T. Titanium dioxide photocatalysis: Present situation and future approaches[J]. Comptes Rendus Chimie,2006,9(5-6):750-760. doi: 10.1016/j.crci.2005.02.055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1169) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return