Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Yuxiang, GUO Hong, XIE Zhongnan, et al. Thermophysical properties of annealed graphite/6061 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001
Citation: ZHANG Yuxiang, GUO Hong, XIE Zhongnan, et al. Thermophysical properties of annealed graphite/6061 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001

Thermophysical properties of annealed graphite/6061 aluminum alloy composites

doi: 10.13801/j.cnki.fhclxb.20220217.001
Funds:  Youth Fund of GRINM Group CO., LTD. (12388); National Key R & D Program of China (2017YFB0406202)
  • Received Date: 2021-12-09
  • Accepted Date: 2022-02-06
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-18
  • Publish Date: 2023-01-15
  • As the heat flux density of electronic devices continues to increase, the hot spots caused by heat accumulation seriously affect the performance and application devices. In this study, annealed graphite (APG)/6061 Al with different graphite layer thickness ratios were prepared using vacuum hot-press method. To enhance the wettability between the annealed graphite and aluminum alloy, annealed graphite was coated with a thin layer of titanium by vacuum micro-evaporation plating, which proved to be effective and efficient. The influence of titanium modification on the microstructure and interface bonding of annealed graphite/aluminum composites was discussed, and the effect of the annealed graphite/aluminum layer thickness ratio on the overall thermal and mechanical properties of the composite was studied. Similarly, the results show that a 400 nm thick interface layer is formed between the annealed graphite and aluminum, and the directionally annealed graphite material modified by titanium is in close contact with aluminum. As the thickness ratio of each phase of Al∶APG∶Al is 1∶3∶1, the composite material has a thermal diffusion coefficient of 901 mm2·s−1 in the in-plane direction and the maximum flexural strength of the composite material is 141 MPa.

     

  • loading
  • [1]
    TOBERER E S, BARANOWSKI L L, DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209. doi: 10.1146/annurev-matsci-070511-155040
    [2]
    张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势[J]. 中国材料进展, 2018, 37(12):994-1001, 1047.

    ZHANG Di, TAN Zhanqiu, XIONG Dingbang, et al. Application and prospect of metal matrix composites for thermal management: An overview[J]. Materials China,2018,37(12):994-1001, 1047(in Chinese).
    [3]
    雷智博, 曹建光, 董丽宁, 等. 航天器热管理高导热材料应用研究[J]. 中国材料进展, 2018, 37(12):1039-1047.

    LEI Zhibo, CAO Jianguang, DONG Lining, et al. Study on application of high thermal conductivity materials in aerospace thermal management[J]. Materials China,2018,37(12):1039-1047(in Chinese).
    [4]
    CHAMROUNE N, MEREIB D, DELANGE F, et al. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites[J]. Journal of Materials Science,2018,53:8180-8192. doi: 10.1007/s10853-018-2139-1
    [5]
    TAN Z, LI Z, FAN G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J]. Materials & Design,2013,47:160-166. doi: 10.1016/j.matdes.2012.11.061
    [6]
    MAIORANOA L P, MOLINA J M. Guiding heat in active thermal management: One-pot incorporation of interfacial nano-engineered aluminum/diamond composites into aluminum foams[J]. Composites Part A: Applied Science and Manufacturing,2020,133:105859. doi: 10.1016/j.compositesa.2020.105859
    [7]
    MIZUUCHI K, INOUE K, AGARI Y, et al. Processing of diamond-particle-dispersed silver-matrix composites in solid-liquid coexistent state by SPS and their thermal conductivity[J]. Composites Part B: Engineering,2012,43(3):1445-1452. doi: 10.1016/j.compositesb.2011.08.003
    [8]
    YI L F, YAMAMOTO T, ONDA T, et al. Orientation control of carbon fibers and enhanced thermal/mechanical properties of hot-extruded carbon fibers/aluminum composites[J]. Diamond and Related Materials,2021,116:108432. doi: 10.1016/j.diamond.2021.108432
    [9]
    ZHU C N, SU Y S, WANG X S, et al. Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing[J]. Composites Part B: Engineering,2021,215:108746. doi: 10.1016/j.compositesb.2021.108746
    [10]
    MIRANDA A T, BOLZONI L, BAREKAR N, et al. Processing, structure and thermal conductivity correlation in carbon fiber reinforced aluminum metal matrix composites[J]. Materials & Design,2018,156:329-339. doi: 10.1016/j.matdes.2018.06.059
    [11]
    WU G H, SU J, GOU H S, et al. Study on graphite fiber and Ti particle reinforced Al composite[J]. Journal of Materials Science,2009,44(18):4776-4780. doi: 10.1007/s10853-009-3718-y
    [12]
    JIANG D P, ZHU X M, YU J K. Enhanced thermal conductivity and bending strength of graphite flakes/aluminum composites via graphite surface modification[J]. Journal of Wuhan University of Technology,2020,53:9-15. doi: 10.1007/s11595-020-2220-x
    [13]
    PRIETO R, MOLINA J M, NARCISO J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scripta Materialia,2008,59(1):11-14. doi: 10.1016/j.scriptamat.2008.02.026
    [14]
    ZHOU C, JI G, CHEN Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials & Design,2014,63:719-728. doi: 10.1016/j.matdes.2014.07.009
    [15]
    SHEN Z Y, JI G, SILVAIN J F. From 1D to 2D arrangements of graphite flakes in an aluminum matrix composite: Impact on thermal properties[J]. Scripta Materialia,2020,183:86-90. doi: 10.1016/j.scriptamat.2020.03.022
    [16]
    PENG X, YING H, SUN X, et al. High thermal conductivity and low thermal expansion coefficient of isotropic graphite-reinforced aluminum matrix composites prepared by in situ curing of silicon aerogel[J]. Journal of Materials Science: Materials in Electronics,2020,31:9250-9259. doi: 10.1007/s10854-020-03465-w
    [17]
    FAN R, HUANG Y, HAN X P, et al. High thermal conductivity and mechanical properties of Si@graphite/aluminum nitride/aluminum composites for high-efficiency thermal management[J]. Journal of Alloys and Compounds,2021,858:157630. doi: 10.1016/j.jallcom.2020.157630
    [18]
    SHEN X Y, HE X B, REN S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. Journal of Alloys and Compounds,2012,529:134-139. doi: 10.1016/j.jallcom.2012.03.045
    [19]
    ZHANG Y, ZHANG H L, WU J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia,2011,65(12):1097-1100. doi: 10.1016/j.scriptamat.2011.09.028
    [20]
    ZHANG X Y, XU M, CAO S Z, et al. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3[J]. Diamond and Related Materials,2020,104:107755. doi: 10.1016/j.diamond.2020.107755
    [21]
    INAGAKI M, KABURAGI Y, HISHIYAMA Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [22]
    XUE C, BAI H, TAO P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials & Design,2016,108:250-258. doi: 10.1016/j.matdes.2016.06.122
    [23]
    HUANG Y, OUYANG Q B, GUO Q, et al. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Materials & Design,2016,90:508-515. doi: 10.1016/j.matdes.2015.10.146
    [24]
    CHANG J, ZHANG Q, LIN Y F, et al. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications[J]. Journal of Alloys and Compounds,2018,742:601-609. doi: 10.1016/j.jallcom.2018.01.332
    [25]
    KIBLER J J. High conductivity hydride material for thermal management: US, 005296310A[P]. 1994-04-22.
    [26]
    KHAN M F S, ALEXANDER A B. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Communications,2012,152(15):1331-1340. doi: 10.1016/j.ssc.2012.04.034
    [27]
    ZHANG H M, HE X B, QU X H, et al. Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers[J]. Rare Metals,2013,32(1):75-80. doi: 10.1007/s12598-013-0018-0
    [28]
    GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon,2020,159:201-212. doi: 10.1016/j.carbon.2019.12.038
    [29]
    PELLEG J, ASHKENAZI D, GANOR M. The influence of a third element on the interface reactions in metal-matrix composites (MMC): Al-graphite system[J]. Materials Science and Engineering: A,2000,281(1-2):239-247. doi: 10.1016/S0921-5093(99)00718-2
    [30]
    HUANG Y, SU Y, GUO X W, et al. Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management[J]. Journal of Alloys and Compounds,2017,711:22-30. doi: 10.1016/j.jallcom.2017.03.233
    [31]
    HUANG Y, SU Y, LI S, et al. Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity[J]. Composites Part B: Engineering,2016,107:43-50. doi: 10.1016/j.compositesb.2016.09.051
    [32]
    LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [33]
    CHANG J, ZHANG Q, LIN Y F, et al. Carbon nanotubes grown on graphite films as effective interface enhancement for aluminum matrix laminated composite in thermal management application[J]. ACS Applied Materials & Interfaces,2018,10(44):38350-38358. doi: 10.1021/acsami.8b12691
    [34]
    RUBINKOVSKII N A, SHORNIKOV D P, TENISHEV A V, et al. Production of aluminum-graphite composite by spark plasma sintering[J]. Glass and Ceramics,2019,76:27-32. doi: 10.1007/s10717-019-00126-1
    [35]
    WANG C, SU Y, OUYANG Q, et al. Enhanced mechanical behavior and fabrication of graphite flakes covered by aligned graphene nanoplatelets reinforced 2A12 aluminum composites[J]. Vacuum,2021,188:110150. doi: 10.1016/j.vacuum.2021.110150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1150) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return