Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Zhiyong, XU Yingqiang, LI Miaoling, et al. Optimum design of ceramic composite armor and residual bending strength after projectile impact[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001
Citation: CHEN Zhiyong, XU Yingqiang, LI Miaoling, et al. Optimum design of ceramic composite armor and residual bending strength after projectile impact[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 577-589. doi: 10.13801/j.cnki.fhclxb.20220214.001

Optimum design of ceramic composite armor and residual bending strength after projectile impact

doi: 10.13801/j.cnki.fhclxb.20220214.001
Funds:  National Key R & D Program (2020YFB2010200); Key Scientific and Technological projects in Henan Province (212102210284; 212102210588; 2221022220021); Key Scientific Research Projects of Colleges and Universities in Henan Province (21A110016)
  • Received Date: 2021-12-27
  • Accepted Date: 2022-01-22
  • Rev Recd Date: 2022-01-16
  • Available Online: 2022-02-14
  • Publish Date: 2023-01-15
  • According to the protection requirements and protection mechanism, a C/C-SiC ceramic/Al-based foam metal composite armour was designed. Under the premise that the surface density of the composite armor was ensured to be 44 kg/m2, the residual bending strength after bullet's striking was used as the evaluation standard. The arranged position of the ceramic plate, the thickness of each bulletproof layer and the pore size in the foam metal were the research factors. The orthogonal simulation optimization scheme of three factors and three levels was designed. The numerical simulation of bullet penetration into the ceramic target plates and compression experiment of the composite armors with ballistic damage was carried out by using the finite element software ABAQUS. The residual bending strength of the designed composite armors was predicted and the structure was optimized. The ceramic composite armor samples were prepared according to the numerical simulation results, and the live shooting and bending experiments were carried out to verify their residual bending strength. The results show that the optimum structural form of the ceramic composite armor with the highest residual bending strength based on the MIL-A-46103E protection standard class III 2A is: The thickness of ceramic plate is 12 mm, the ceramic plate is laid out on the bulletproof surface, and the Al-based composite foam has a mixed pore size of 4 mm+10 mm. The order of primary and secondary factors affecting residual bending strength is: Ceramic plate thickness > ceramic plate location > Al-based composite foam pore size.

     

  • loading
  • [1]
    WANG Q X, ZHANG H M, CAI H N, et al. Simulation analysis of co-continuous ceramic composite dynamic mechanical performance and optimization design[J]. Computational Materials Science,2017,129:123-128. doi: 10.1016/j.commatsci.2016.12.009
    [2]
    江洁, 董侠, 陈美玉, 等. 现代防弹材料[J]. 材料导报, 2013, 27(11):70-76, 82.

    JIANG Jie, DONG Xia, CHEN Meiyu, et al. A review of modern bulletproof materials[J]. Materials Reports,2013,27(11):70-76, 82(in Chinese).
    [3]
    MARTINIR, BARTHELAT F. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales[J]. Bioinspiration& Biomimetics,2016,11:1-10.
    [4]
    SONG N, LIU H, FANG J. Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites[J]. Ceramics International,2016,42(1):351-356. doi: 10.1016/j.ceramint.2015.08.117
    [5]
    刘胜, 吕攀珂, 张艳朋. 陶瓷复合装甲的结构设计研究[J]. 兵器材料科学与工程, 2011, 34(6):84-86.

    LIU Sheng, LV Panke, ZHANG Yanpeng. Structural design of ceramic composite armor[J]. Ordnance Material Science and Engineering,2011,34(6):84-86(in Chinese).
    [6]
    GABROVSEK S, COLWILL I, STIPIDIS E. Agent-based simulation of improvised explosive device fragment damage on individual components[J]. The Journal of Defense Modeling and Simulation,2016,13(4):399-413. doi: 10.1177/1548512916653189
    [7]
    GUO W, BAI S, YE Y. Controllable fabrication and mechanical properties of C/C-SiC composites based on an electromagnetic induction heating reactive melt infiltration[J]. Journal of the European Ceramic Society,2021,41(4):2347-2355. doi: 10.1016/j.jeurceramsoc.2020.11.018
    [8]
    LICITRA L, LUONG D D, STRBIK O M, et al. Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams[J]. Materials & Design,2015,66:504-515.
    [9]
    KATONA B, SZEBENYI G, ORBULOV I N, et al. Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams[J]. Materials Science and Engineering: A,2017,679:350-357. doi: 10.1016/j.msea.2016.10.061
    [10]
    ZHANG B, LIN Y, LI S, et al. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams[J]. Composites Part B: Engineering,2016,98:288-296. doi: 10.1016/j.compositesb.2016.05.034
    [11]
    MONTEIRO S N, BRAGA F D O, LIMA E P, et al. Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor[J]. Polymer Engineering and Science,2017,57(9):947-954. doi: 10.1002/pen.24471
    [12]
    HU D, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071
    [13]
    SERJOUEI A, GOUR G, ZHANG X F, et al. On improving ballistic limit of bi-layer ceramic-metal armor[J]. International Journal of Impact Engineering,2017,105:54-67. doi: 10.1016/j.ijimpeng.2016.09.015
    [14]
    MONTEIRO S N, FIGUEIREDO A B S, LIMA E S, et al. The role of sintered Al2O3-Nb2O5 front plate on the ballistic performance of multilayered armors[J]. Materials Science Forum,2017,899:329-334. doi: 10.4028/www.scientific.net/MSF.899.329
    [15]
    US Army Research Laboratory. Armor: Lightweight, composite: MIL-PRF-46103E[S].US Aberdeen proving ground: US Army Research Laboratory, 1998.
    [16]
    SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast Impact loading of metal-foam sandwich panels[J]. Procedia Engineering,2017,173:495-502. doi: 10.1016/j.proeng.2016.12.073
    [17]
    叶腾钶, 徐豫新, 杨胜, 等. 钢、陶瓷和UHMWPE纤维层合结构抗破片侵彻最佳组合方式[J]. 北京理工大学学报(自然科学版), 2018, 38(8):786-791.

    YE Tengke, XU Yuxin, YANG Sheng, et al. Optimal configuration sequence of steel, ceramic and UHMWPE fiber laminates for the anti-fragment penetration[J]. Transactions of Beijing Institute of Technology,2018,38(8):786-791(in Chinese).
    [18]
    ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with grapheme oxide[J]. Applied Materials Interfaces,2012,4(3):1543-1552. doi: 10.1021/am201757v
    [19]
    GRUJICIC M, BELL W C, PANDURANGAN B, et a1. Design and material selection guidelines and strategies for transparent armor systems[J]. Materials & Design,2012,34:808-819. doi: 10.1016/j.matdes.2011.07.007
    [20]
    FIDAN S, BORA M O, COBAN O, et al. Damage characterization of repeatedly impacted glass fiber reinforced polyester-armor steel composites with cone beam computed tomography technique[J]. Polymer Composites,2016,37(2):583-593. doi: 10.1002/pc.23215
    [21]
    PANDYA K S, POTHNIS J R, RAVIKUMAR G, et al. Ballistic impact behavior of hybrid composites[J]. Materials & Design,2013,44:128-135. doi: 10.1016/j.matdes.2012.07.044
    [22]
    罗通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究[D]. 北京: 北京理工大学, 2015.

    LUO Tong. Study on the preparation process and anti-ballistic properties of ceramic composite targets confined by fiber[D]. Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [23]
    TASDEMIRCI A, TUNUSOGLU G, GUDEN M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study[J]. International Journal of Impact Engineering,2012,44:1-9. doi: 10.1016/j.ijimpeng.2011.12.005
    [24]
    ANDREA N, ENRICO R. On the effect of the backup plate stiffness on the brittle failure of a ceramic armor[J]. Acta Mechanica,2016,227(1):159-172. doi: 10.1007/s00707-015-1412-5
    [25]
    CHEN Z Y, XU Y Q, LI M L, et al. Structural design and numerical simulation optimization of SiC wood ceramic composite armor[J]. Rare Metal Materials and Engineering,2021,50(4):1146-1155.
    [26]
    KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact[J]. Composites Part B: Engineering,2010,41(8):583-593. doi: 10.1016/j.compositesb.2010.10.001
    [27]
    HU D Q, WANG J R, CHEN Z G, et al. Simulation and experimental investigation on armor-piecing performance of TC composite projectile to multilayer A3 steel plates targets[J]. Journal of Ballistics,2017,29(1):73-78.
    [28]
    WANG M, QIN Q, WANG T J. On physically asymmetric sandwich plates with metal foam core subjected to blast loading: dynamic response and optimal design[J]. Acta Mechanica,2017,228(9):3265-3283. doi: 10.1007/s00707-017-1870-z
    [29]
    GUO Y N, SUN Q, WU L. Study of dynamic impact behaviors and ballistic properties of ceramic/UHMWPE composite armor[J]. Applied Mechanics and Materials,2012,121-126:397-400. doi: 10.4028/www.scientific.net/AMM.121-126.397
    [30]
    KYNER A, DHARMASENA K, WILLIAMS K, et al. High intensity impulsive loading by explosively accelerated granular matter[J]. International Journal of Impact Engineering,2017,108:229-251. doi: 10.1016/j.ijimpeng.2017.02.009
    [31]
    GUO Z R, CHEN W N, ZHENG J. A semi-empirical design parameter for determining the inelastic strike-face mass fraction of soft armor targets[J]. International Journal of Impact Engineering,2019,125:83-92. doi: 10.1016/j.ijimpeng.2018.10.007
    [32]
    陈智勇, 李妙玲, 孙卫康, 等. 温度和成分质量比对聚碳硅烷陶瓷先驱体产率的影响[J]. 硅酸盐学报, 2018, 46(9):1297-1303.

    CHEN Zhiyong, LI Miaoling, SUN Weikang, et al. Effects of temperature and composition mass ratio on yield of polycarbosilane ceramic precursor[J]. Journal of the Chinese Ceramic Society,2018,46(9):1297-1303(in Chinese).
    [33]
    陈智勇, 徐颖强, 肖立, 等. C/C-SiC复合材料致密度影响因素研究[J]. 航空材料学报, 2021, 41(1):67-73. doi: 10.11868/j.issn.1005-5053.2020.000072

    CHEN Zhiyong, XU Yingqiang, XIAO Li, et al. Factors affecting the density of C/C-SiC composite[J]. Journal of Aeronautical Materials,2021,41(1):67-73(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000072
    [34]
    YU Q Y, ZHAO Y, DONG A Q, et al. Mechanical properties of EPS filled syntactic foams prepared by VARTM[J]. Composites Part B: Engineering,2018,136:126-134. doi: 10.1016/j.compositesb.2017.07.053
    [35]
    YU Q Y, ZHAO Y, DONG A Q, et al. Preparation and properties of C/C hollow spheres and the energy absorption capacity of the corresponding aluminum syntactic foams[J]. Materials,2018,11(6):997. doi: 10.3390/ma11060997
    [36]
    YU Q Y, ZHAO Y, DONG A Q, et al. Comparison of two different methods for producing hollow macrospheres with carbon fiber reinforced composite skin used in syntactic foams[J]. Polymer Composites,2019,40(S2):E1075-E1083. doi: 10.1002/pc.24862
    [37]
    丁华东, 方宁象, 刘云峰, 等. 陶瓷基复合装甲防12.7 mm穿甲燃烧弹的靶试研究(II)[J]. 装甲兵工程学院学报, 2012, 26(2):77-79. doi: 10.3969/j.issn.1672-1497.2012.02.017

    DING Huadong, FANG Ningxiang, LIU Yunfeng, et al. Target experiment of ceramics-based composite armor against 12.7 mm armor piercing incendiary (II)[J]. Journal of Academy of Armored Force Engineering,2012,26(2):77-79(in Chinese). doi: 10.3969/j.issn.1672-1497.2012.02.017
    [38]
    ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: D7137/D7137M—2017[S]. ASTM International: West Conshohocken, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(7)

    Article Metrics

    Article views (1085) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return