Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001
Citation: ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001

Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature

doi: 10.13801/j.cnki.fhclxb.20220211.001
Funds:  National Natural Science Foundation of China (51572224; U2241239); Programme of Introducing Talents of Discipline to Universities (BP0820014); National Key Research and Development Program of China (2017YFB1103504)
  • Received Date: 2021-11-22
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-14
  • Publish Date: 2023-01-15
  • Silicon carbide fiber reinforced silicon carbide composites (SiCf/SiC) have great potential to be used in the thermal structure of next-generation aero-engines. The creep rupture time tu of SiCf/SiC significantly reduced at intermediate temperatures (~800℃). Therefore, this paper investigated the creep rupture behaviors of a plain weave SiCf/SiC (2D-SiCf/SiC) at 500℃, 800℃ and 1000℃ with stresses of 100 MPa to 160 MPa in air. The morphology, microstructure and compositions of the crept specimens were observed by scanning electron microscopy, transmission electron microscopy and an energy dispersive analysis system. The results show that the tu of 2D-SiCf/SiC is closely related to the applied temperatures and stresses. At the same temperature, tu decreases with the increasing stresses at constant temperatures. When the temperature is 800℃ and the stress is greater than the proportional limit stress (PLS), embrittlement takes place for the 2D-SiCf/SiC, which means the tu and the total creep strain are much shorter than those at 500℃ and 1000℃. The embrittlement mechanisms involve matrix cracking, oxidization of BN and formation of strong fiber/matrix interphase bonding by the filling of SiO2, as well as for the 2D-SiCf/SiC at intermediate temperatures. tu vs. the applied stress follows linear relationship in logarithmic axis, whose transition appears when the applied stress equals to PLS.

     

  • loading
  • [1]
    SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3-9):409-420. doi: 10.1016/j.actaastro.2004.05.052
    [2]
    张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [3]
    WANG X, SONG Z, CHENG Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society,2020,40(14):4872-4878. doi: 10.1016/j.jeurceramsoc.2020.01.033
    [4]
    李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. doi: 10.3321/j.issn:1005-023X.2001.01.016

    LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic matrix composites[J]. Materials Review,2001,15(1):45-49(in Chinese). doi: 10.3321/j.issn:1005-023X.2001.01.016
    [5]
    MORSCHER G N, CAWLEY J D. Intermediate temperature strength degradation in SiC/SiC composites[J]. Journal of the European Ceramic Society,2002,22(14-15):2777-2787. doi: 10.1016/S0955-2219(02)00144-9
    [6]
    李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442.

    LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese).
    [7]
    DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[M]. New York: John Wiley & Sons, LTD., 2014: 217-235.
    [8]
    BHATT R T. Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix[C]//Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. NASA:Washington D.C., 2017.
    [9]
    NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1145-1155. doi: 10.1016/S1359-835X(97)00128-0
    [10]
    GALLET S L, REBILLAT F, GUETTE A, et al. Influence of a multilayered matrix on the lifetime of SiC/BN/SiC minicomposites[J]. Journal of Materials Science,2004,39(6):2089-2097. doi: 10.1023/B:JMSC.0000017771.93067.42
    [11]
    BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of environmental barrier coated SiC/SiC composites[J]. Materials Science and Engineering: A,2008,476(1-2):8-19. doi: 10.1016/j.msea.2007.04.067
    [12]
    SULLIVAN R M. Time-dependent stress rupture strength of Hi-Nicalon fiber-reinforced silicon carbide composites at intermediate temperatures[J]. Journal of the Eupean Ceramic Society,2016,36(8):1885-1892. doi: 10.1016/j.jeurceramsoc.2016.02.043
    [13]
    BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering: A,1999,261(1-2):284-291. doi: 10.1016/S0921-5093(98)01079-X
    [14]
    UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI[J]. Journal of Nuclear Materials,2011,417(1-3):363-366. doi: 10.1016/j.jnucmat.2010.12.253
    [15]
    王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7):817-821.

    WANG Xi, WANG Kejie, BAI Hui, et al. Creep properties and damage mechanism of 2D-SiCf/SiC composites prepared by CVI[J]. Journal of Inorganic Materials,2020,35(7):817-821(in Chinese).
    [16]
    RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at elevated temperature[J]. Journal of Engineering for Gas Turbines & Power,2012,134(9):091301. doi: 10.1115/1.4006989
    [17]
    MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology,2008,68(15):3305-3313.
    [18]
    DUGNE O, PROUHET S, GUETTE A, et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fibre-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science,1993,28(13):3409-3422. doi: 10.1007/BF01159815
    [19]
    HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society,1995,78(8):2097-2100. doi: 10.1111/j.1151-2916.1995.tb08621.x
    [20]
    MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society,1997,80(8):2029-2042.
    [21]
    ZHOU J, CHENG L F, YE F, et al. Effects of heat treatment on mechanical and dielectric properties of 3D Si3N4f/BN/Si3N4 composites by CVI[J]. Journal of the European Ceramic Society,2020,40(15):5305-5315. doi: 10.1016/j.jeurceramsoc.2020.06.018
    [22]
    JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High-temperature oxidation of boron nitride: II, boron nitride layers in composites[J]. Journal of the American Ceramic Society,1999,82(6):1473-1482.
    [23]
    JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.
    [24]
    LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature—Part I[J]. Applied Composite Materials,2006,13(3):147-172. doi: 10.1007/s10443-006-9009-8
    [25]
    MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN interphase, SiC matrix composite in air[J]. Journal of the American Ceramic Society,2000,83(6):1441-1449. doi: 10.1111/j.1151-2916.2000.tb01408.x
    [26]
    XU W B, ZOK F W, MCMEEKING R M, et al. Model of oxidation-induced fiber fracture in SiC/SiC composites[J]. Journal of the American Ceramic Society,2014,97(11):3676-3683. doi: 10.1111/jace.13180
    [27]
    LIU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. doi: 10.1016/j.jeurceramsoc.2019.04.013
    [28]
    HUI M, CHENG L. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon,2009,47(4):1034-1042. doi: 10.1016/j.carbon.2008.12.025
    [29]
    ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology,1999,59(6):833-851. doi: 10.1016/S0266-3538(99)00014-7
    [30]
    MORSCHER G N, GYEKENYESI J Z, BHATT R T. Damage accumulation in 2D woven SiC/SiC ceramic matrix composites[C]//Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Ohio Aerospace Institute, NASA Glenn Research Center : Cleveland, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1416) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return