Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Xia, LIU Yuejun, LIU Xiaochao, et al. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001
Citation: LI Xia, LIU Yuejun, LIU Xiaochao, et al. Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 437-446. doi: 10.13801/j.cnki.fhclxb.20220208.001

Preparation and properties of nano-ZnO/bio-based nylon 612 nano-composite antibacterial film

doi: 10.13801/j.cnki.fhclxb.20220208.001
Funds:  National Natural Science Foundation of China (11872179); Natural Science Foundation of Hunan Province (2020JJ5137); Scientific Research Project of Education Department of Hunan Province (19A138; 19B152)
  • Received Date: 2021-11-11
  • Accepted Date: 2022-01-15
  • Rev Recd Date: 2021-12-27
  • Available Online: 2022-02-08
  • Publish Date: 2023-01-15
  • Bacterial growth can shorten the shelf life of food and exert a negative effect on human health, therefore it is of great importance to conduct research on anti-bacterial films. Herein, the γ-aminopropyltriethoxysilane coupling agent (KH550) was used to modify nano-zinc oxide, and the modified nano-zinc oxide (m-ZnO) was melt-blended with nylon 612 (PA612) to prepare m-ZnO/PA612 nanocomposite, followed by the fabrication of the antibacterial film through extrusion film casting process. The FTIR was used to characterize the nano-zinc oxide before and after the modification, which proved that KH550 was successfully grafted onto the nano-zinc oxide. Through SEM, DSC, TGA, plate counting method, and other test methods, the dispersibility of nano-zinc oxide and the crystallization performance, thermal performance, and antibacterial properties of composite materials were studied. The results show that the m-ZnO is well dispersed in the PA612 matrix. The m-ZnO can be used as a nucleating agent to increase the crystallinity of PA612. When the content of m-ZnO is 2wt%, the crystallinity is increased by 4.1%. Moreover, the m-ZnO exhibits a reinforcing effect on PA612. When the addition amount of m-ZnO is 2wt%, the tensile strength of the m-ZnO/PA612 nanocomposite film is 15% higher than that of pure PA612. The presence of m-ZnO gives PA612 antibacterial properties. m-ZnO/PA612 nanocomposite film has a good inhibitory effect on Escherichia coli and Staphylococcus aureus. With the increase of m-ZnO content, the antibacterial rate increases, when the mass fraction of m-ZnO is 4wt%, the antibacterial rate against Escherichia coli is 93.25%, and the antibacterial rate against Staphylococcus aureus is 91.03%.

     

  • loading
  • [1]
    FUNK I, RIMMEL N, SCHORSCH C, et al. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(10):1491-1502. doi: 10.1007/s10295-017-1972-6
    [2]
    TYUFTIN A A, KERRY J P. Review of surface treatment methods for polyamide films for potential application as smart packaging materials: Surface structure, antimicrobial and spectral properties[J]. Food Packaging and Shelf Life,2020,24:100475. doi: 10.1016/j.fpsl.2020.100475
    [3]
    WU Y, HUANG A, FAN S, et al. Crystal structure and mechanical properties of uniaxially stretched PA612/SiO2 films[J]. Polymers,2020,12(3):711. doi: 10.3390/polym12030711
    [4]
    WADI V S, JENA K K, HALIQUE K, et al. Linear sulfur-nylon composites: Structure, morphology, and antibacterial activity[J]. ACS Applied Polymer Material,2020,2(2):198-208. doi: 10.1021/acsapm.9b00754
    [5]
    RYŠÁNEK P, MALÝ M, ČAPKOVÁ P, et al. Antibacterial modification of nylon-6 nanofibers: Structure, properties and antibacterial activity[J]. Journal of Polymer Research,2017,24(11):1-10. doi: 10.1007/s10965-017-1365-6
    [6]
    TANG L, WANG D Y, XU Q S, et al. Preparation and characterization of antibacterial nylon 6 fiber[J]. Materials Science Forum,2017,898:2254-2262. doi: 10.4028/www.scientific.net/MSF.898.2254
    [7]
    VENKATRAM M, NARASIMHA MURTHY H N R, GAIKWAD A, et al. Antibacterial and flame retardant properties of Ag-MgO/nylon 6 electrospun nanofibers for protective applications[J]. Clothing and Textiles Research Journal,2018,36(4):296-309. doi: 10.1177/0887302X18783071
    [8]
    ROHAETI E, RAKHMAWATI A. Application of Terminalia catappa in preparation of silver nanoparticles to develop antibacterial Nylon[J]. Oriental Journal of Chemistry,2017,33:2905-2912. doi: 10.13005/ojc/330625
    [9]
    OMER R A, GHENI A I, OMAR K A, et al. Antimicrobial activity of nylon nanocomposites against Staphylococcus aureus and Escherichia coli bacteria[J]. Science Journal of University of Zakho,2019,7(4):138-143. doi: 10.25271/sjuoz.2019.7.4.631
    [10]
    WANG Z, ZHANG L, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale Research Letters,2017,12(1):1-8. doi: 10.1186/s11671-016-1773-2
    [11]
    TANG Q, WANG K, REN X, et al. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion[J]. Science of the Total Environment,2020,715:137018. doi: 10.1016/j.scitotenv.2020.137018
    [12]
    THOKALA N, KEALEY C, KENNEDY J, et al. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications[J]. Materials Science and Engineering: C,2017,78:1179-1186. doi: 10.1016/j.msec.2017.03.149
    [13]
    SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism[J]. Nano-micro Letters,2015,7(3):219-242. doi: 10.1007/s40820-015-0040-x
    [14]
    QI K, CHENG B, YU J, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds,2017,727:792-820. doi: 10.1016/j.jallcom.2017.08.142
    [15]
    LI S C, LI Y N. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. Journal of Applied Polymer Science,2010,116(5):2965-2969. doi: 10.1002/app.31802
    [16]
    KIM I, VISWANATHAN K, KASI G, et al. Poly(lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials[J]. Polymers,2019,11(9):1427. doi: 10.3390/polym11091427
    [17]
    LI Y, XU W, ZHANG G. Effect of coupling agent on nano-ZnO modification and antibacterial activity of ZnO/HDPE nanocomposite films[J]. IOP Conference Series: Materials Science and Engineering,2015,87:012054. doi: 10.1088/1757-899X/87/1/012054
    [18]
    LI Y, YU J, GUO Z. The influence of silane treatment on Nylon 6/nano-SiO2 in situ polymerization[J]. Journal of Applied Polymer Science,2002,84(4):827-834. doi: 10.1002/app.10349
    [19]
    国家化学建筑材料测试中心(材料测试部). 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.

    National Testing Center of Polymer and Chemical Building Materials (Materials Testing Department). Determination of the luminous transmittance and haze of transparent plastics: GB/T 2410—2008[S]. Beijing: China StandardsPress, 2008(in Chinese).
    [20]
    中华人民共和国卫生部. 塑料—塑料表面抗菌性能试验方法: GB/T 31402—2015[S]. 北京: 中国标准出版社, 2015.

    Ministry of Health of the People's Republic of China. Plastics—Measurement of antibacterial activity on plastics surfaces: GB/T 31402—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [21]
    KHURANA N, ARORA P, PENTE A S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J]. Inorganic Chemistry Communications,2021,124:108347. doi: 10.1016/j.inoche.2020.108347
    [22]
    HANG T T X, DUNG N T, TRUC T A, et al. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings[J]. Progress in Organic Coatings,2015,79:68-74. doi: 10.1016/j.porgcoat.2014.11.008
    [23]
    FAN X, YAN Y. Poly (amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties[J]. Polymer Bulletin,2020,77(5):2325-2343. doi: 10.1007/s00289-019-02860-6
    [24]
    SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science and Engineering: C,2018,93:289-298. doi: 10.1016/j.msec.2018.08.002
    [25]
    ASANO T, BALTÁ CALLEJA F J, GIR L, et al. Structure and mechanical properties of nylon 612 prepared by temperature slope crystallization. II. Rolling deformation and microhardness of the oriented negative spherulite[J]. Journal of Macromolecular Science, Part B: Physics,1997,36(6):799-812. doi: 10.1080/00222349708212403
    [26]
    SHOJAEIARANI J, BAJWA D, JIANG L, et al. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of poly(lactic acid)-zinc oxide composites[J]. Polymer Engineering & Science,2019,59(6):1242-1249. doi: 10.1002/pen.25107
    [27]
    MALLAKPOUR S, NOURUZI N. Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites[J]. Polymer,2016,89:94-101. doi: 10.1016/j.polymer.2016.02.038
    [28]
    LIU J, WANG Y, MA J, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO[J]. Journal of Alloys and Compounds,2019,783:898-918. doi: 10.1016/j.jallcom.2018.12.330
    [29]
    HU C, GUO J, QU J, et al. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation[J]. Langmuir,2007,23(9):4982-4987. doi: 10.1021/la063626x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (1065) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return