Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHAO Zhiyong, YUAN Hao, LIU Chuang, et al. Mechanical response of inclined Nomex honeycombs under combined shear-compression loads[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001
Citation: ZHAO Zhiyong, YUAN Hao, LIU Chuang, et al. Mechanical response of inclined Nomex honeycombs under combined shear-compression loads[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001

Mechanical response of inclined Nomex honeycombs under combined shear-compression loads

doi: 10.13801/j.cnki.fhclxb.20220125.001
Funds:  National Natural Science Foundation of China (11902256); Natural Science Basic Research Program of Shaanxi (2019JQ-479)
  • Received Date: 2021-11-24
  • Accepted Date: 2022-01-18
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-01-27
  • Publish Date: 2023-01-15
  • When forming curved honeycomb sandwich structures, it needs to mill the honeycomb core into a curved shape, resulting in inclined cell walls of honeycombs and reducing its mechanical properties. A detailed finite element model was introduced to analyze the mechanical response and deformation mechanism of inclined honeycombs, and then verified by means of experiments using a specially designed set-up. The simulated results agree well with the experimental ones in terms of the crushing behavior and collapse mechanism. After that, the validated model was used to evaluate the effect of the inclined cell wall angle range from 0° to 40° on the crushing behavior of honeycombs. It is found that the inclined cell wall angle has a significant effect on the crushing response, and the mechanical properties of honeycomb decrease as the inclined cell wall angle increases. When the inclined cell wall angle varies from 0º to 40º, the maximum reduction of initial peak stress and the plateau strength is 47.7% and 29%, respectively. Moreover, the relationship between the dimension of cross-section about inclined cell wall honeycomb cores and the inclined angle was analyzed. The collapse stress of honeycomb under out-of-plane compression and shear loading is deduced by equivalent the inclined cell wall honeycomb as a vertical cell wall honeycomb with the same cross-section dimension, which reveals the influence mechanism of inclined cell wall angle on the properties of honeycombs.

     

  • loading
  • [1]
    CASTANIE B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J]. Composites Part C: Open Access,2020,1:100004. doi: 10.1016/j.jcomc.2020.100004
    [2]
    HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering,2020,181:107496. doi: 10.1016/j.compositesb.2019.107496
    [3]
    齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对 CFRP 蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [4]
    SEEMANN R, KRAUSE D. Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level[J]. Composite Structures,2017,159:702-718. doi: 10.1016/j.compstruct.2016.09.071
    [5]
    JANG W Y, KYRIAKIDES S. On the buckling and crushing of expanded honeycomb[J]. International Journal of Mechanical Sciences,2015,91:81-90. doi: 10.1016/j.ijmecsci.2014.02.008
    [6]
    LI X, LU F, ZHANG Y, et al. Experimental study on out-of-plane mechanical and energy absorption properties of combined hexagonal aluminum honeycombs under dynamic impact[J]. Materials & Design,2020,194:108900. doi: 10.1016/j.matdes.2020.108900
    [7]
    LIU L, WANG H, GUAN Z. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures,2015,121:304-314. doi: 10.1016/j.compstruct.2014.11.034
    [8]
    王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3):601-608. doi: 10.13801/j.cnki.fhclxb.20190918.001

    WANG Baoqin, WANG Monan, LIU Changxi. Stability of honeycomb sandwich composite structure under axial compression based onmulti-scalemethod[J]. Acta Materiae Compositae Sinica,2020,37(3):601-608(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190918.001
    [9]
    LIU L, MENG P, WANG H, et al. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall[J]. Composites Part B: Engineering,2015,76:122-132. doi: 10.1016/j.compositesb.2015.02.017
    [10]
    RODRIGUEZ-RAMIREZ J D D, CASTANIE B, BOUVET C. Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core: Application to insert sizing[J]. Composite Structures,2018,193:121-139. doi: 10.1016/j.compstruct.2018.03.076
    [11]
    冯威, 徐绯, 寇剑锋, 等. 考虑弹性支撑时蜂窝芯剪切屈曲强度的插值求解方法[J]. 复合材料学报, 2017, 34(6):1394-1399.

    FENG Wei, XU Fei, KOU Jianfeng, et al. Interpolation method for calculating the shear buckling strengths of honeycomb core considering elastic supports[J]. Acta Materiae Compositae Sinica,2017,34(6):1394-1399(in Chinese).
    [12]
    SHAFIQ M, AYYAGARI R S, EHAAB M, et al. Multiaxial yield surface of transversely isotropic foams: Part II—Experimental[J]. Journal of the Mechanics and Physics of Solids,2015,76:224-236. doi: 10.1016/j.jmps.2014.10.009
    [13]
    ZHANG D, FEI Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science and Technology,2016,54:320-329. doi: 10.1016/j.ast.2016.05.003
    [14]
    MOHR D, DOYOYO M. Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading[J]. International Journal of Applied Mechanics,2004,71(3):375-385. doi: 10.1115/1.1683715
    [15]
    HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J]. International Journal of Plasticity,2006,22(1):73-109. doi: 10.1016/j.ijplas.2005.02.002
    [16]
    ZHANG D, LU G, RUAN D, et al. Quasi-static combined compression-shear crushing of honeycombs: An experimental study[J]. Materials & Design,2019,167:107632. doi: 10.1016/j.matdes.2019.107632
    [17]
    HONG S T, PAN J, TYAN T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads[J]. International Journal of Plasticity,2008,24(1):89-117. doi: 10.1016/j.ijplas.2007.02.003
    [18]
    HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: Experiments[J]. International Journal of Solids and Structures,2011,48(5):687-697. doi: 10.1016/j.ijsolstr.2010.11.005
    [19]
    TOUNSI R, MARKIEWICZ E, HAUGOU G, et al. Dynamic behaviour of honeycombs under mixed shear-compression loading: Experiments and analysis of combined effects of loading angle and cells in-plane orientation[J]. International Journal of Solids and Structures,2016,80:501-511. doi: 10.1016/j.ijsolstr.2015.10.010
    [20]
    ASHAB A S M, RUAN D, LU G, et al. Quasi-static and dynamic experiments of aluminum honeycombs under combined compression-shear loading[J]. Materials & Design,2016,97:183-194. doi: 10.1016/j.matdes.2016.02.074
    [21]
    OLYMPIO K R, GANDHI F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures,2010,21(17):1719-1735. doi: 10.1177/1045389X09350331
    [22]
    ZHAO Z, LIU C, SUN L, et al. Experimental and numerical study on the constrained bending-induced collapse of hexagonal honeycomb[J]. Composite Structures,2021,277:114604. doi: 10.1016/j.compstruct.2021.114604
    [23]
    WANG Z, LIU J, HUI D. Mechanical behaviors of inclined cell honeycomb structure subjected to compression[J]. Composites Part B: Engineering,2017,110:307-314. doi: 10.1016/j.compositesb.2016.10.062
    [24]
    MACRO G, GILIOLI A, MANES A. Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex™ honeycomb core[J]. Computational Materials Science,2012,56:69-78. doi: 10.1016/j.commatsci.2012.01.007
    [25]
    ZHANG J, ASHBY M F. The out-of-plane properties of honeycombs[J]. International Journal of Mechanical Sciences,1992,34(6):475-489. doi: 10.1016/0020-7403(92)90013-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (858) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return