Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
MA Li, DING Jingxian, ZHANG Xiaodie, et al. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 290-299. doi: 10.13801/j.cnki.fhclxb.20220124.003
Citation: MA Li, DING Jingxian, ZHANG Xiaodie, et al. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 290-299. doi: 10.13801/j.cnki.fhclxb.20220124.003

Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes

doi: 10.13801/j.cnki.fhclxb.20220124.003
Funds:  Key Research Pojects of Henan Province Education Department (20A530005); Yangtze River Scholar Innovation Team Development Plan (IRT1187); National Natural Science Foundation in China (52275295)
  • Received Date: 2021-11-10
  • Accepted Date: 2022-01-15
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-01-25
  • Publish Date: 2023-01-15
  • Flexible electrode of dielectric elastomer actuator (DEA) plays important roles in generating electric fields and constraining dielectric matrix deformation. By using one-dimensional multi-wall carbon nanotubes (MWCNT) and zero-dimensional conductive carbon black (CB) as co-conductive fillers, a series of polydimethyl siloxane (PDMS) composite electrode films (MWCNT-CB/PDMS) were designed with varying size, mechanical and electrical properties. The electrode films were adhered to the lateral surfaces of a polyvinyl chloride gel matrix film and imported into a pulsed high-voltage signal to obtain novel dielectric polymer actuators with various electromechanical behaviors. Tests of electromechanical properties reveal that, the increase of electrode coverage is beneficial to DEA’s strain, the increase of electrode thickness hampers its strain, while the strain exhibits an initial increase following decrease trend with increasing MWCNT loading. Orthogonal experiments show that, the MWCNT loading has a significant effect on the displacement output, while the electrode coverage and thickness present high-level significances to the displacement output. Under the optimal condition, the displacement output of DEA is 1.71 mm at maximum.

     

  • loading
  • [1]
    JI X, LIU X, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics,2019,4(37):05-1-05-12. doi: 10.1126/scirobotics.aaz6451
    [2]
    CHU H, HU X, WANG Z, et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles[J]. Science,2021,371(6528):494-498. doi: 10.1126/science.abc4538
    [3]
    JI X, LIU X, CACUCCIOLO V, et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators[J]. Advanced Functional Materials,2021,31(39):2006639. doi: 10.1002/adfm.202006639
    [4]
    LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the Mariana Trench[J]. Nature,2021,591(7848):66-71. doi: 10.1038/s41586-020-03153-z
    [5]
    CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature,2019,575(7782):324-329. doi: 10.1038/s41586-019-1737-7
    [6]
    YOU I, MACKANIC D G, MATSUHISA N, et al. Artificial multimodal receptors based on ion relaxation dynamics[J]. Science,2020,370(6519):961-965. doi: 10.1126/science.aba5132
    [7]
    ZHAO H, HUSSAIN A M, ISRAR A, et al. A wearable soft haptic communicator based on dielectric elastomer actuators[J]. Soft Robotics,2020,7(4):451-461. doi: 10.1089/soro.2019.0113
    [8]
    SHIAN S, BERTOLDI K, CLARKE D R. Dielectric elastomer based “grippers” for soft robotics[J]. Advanced Materials,2015,27(43):6814-6819. doi: 10.1002/adma.201503078
    [9]
    SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials,2016,28(2):231-238. doi: 10.1002/adma.201504264
    [10]
    PELRINE R, KORNBLUH R, PEI Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science,2000,287(5454):836-839. doi: 10.1126/science.287.5454.836
    [11]
    TIAN M, YAO Y, LIU S, et al. Separated-structured all-organic dielectric elastomer with large actuation strain under ultra-low voltage and high mechanical strength[J]. Journal of Materials Chemistry A,2015,3(4):1483-1491. doi: 10.1039/C4TA04197F
    [12]
    SUN H, LIU X, LIU S, et al. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network[J]. Chemical Engineering Journal,2020,384:123242. doi: 10.1016/j.cej.2019.123242
    [13]
    YIN L J, ZHAO Y, ZHU J, et al. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor[J]. Nature Communications,2021,12(1):1-10. doi: 10.1038/s41467-020-20314-w
    [14]
    BOZLAR M, PUNCKT C, KORKUT S, et al. Dielectric elastomer actuators with elastomeric electrodes[J]. Applied Physics Letters,2012,101(9):091907. doi: 10.1063/1.4748114
    [15]
    ZHANG J, LIU L, CHEN H. Electromechanical properties of soft dissipative dielectric elastomer actuators influenced by electrode thickness and conductivity[J]. Journal of Applied Physics,2020,127(18):184902. doi: 10.1063/5.0001580
    [16]
    MA G, WU X, CHEN L, et al. Characterization and optimization of elastomeric electrodes for dielectric elastomer artificial muscles[J]. Materials,2020,13(23):5542. doi: 10.3390/ma13235542
    [17]
    陈鹿民, 王晨, 王才东, 等. 不对称电极介电弹性体的电致动响应与有限元分析[J]. 功能材料, 2017, 48(6):6074-6079. doi: 10.3969/j.issn.1001-9731.2017.06.013

    CHEN Lumin, WANG Chen, WANG Caidong, et al. Electrodynamic response and finite element analysis of dielectric elastomers with asymmetric electrodes[J]. Functional Materials,2017,48(6):6074-6079(in Chinese). doi: 10.3969/j.issn.1001-9731.2017.06.013
    [18]
    GUO D, HAN Y, DING Y, et al. Prestrain-free electrostrictive film sandwiched by asymmetric electrodes for out-of-plane actuation[J]. Chemical Engineering Journal,2018,352:876-885. doi: 10.1016/j.cej.2018.07.094
    [19]
    PERUTZ S, WANG J, KRAMER E J, et al. Synthesis and surface energy measurement of semi-fluorinated, low-energy surfaces[J]. Macromolecules,1998,31(13):4272-4276. doi: 10.1021/ma9700993
    [20]
    邓火英, 梁馨, 顾轶卓, 等. MWCNTs 对环氧树脂及多尺度 MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2018, 35(11):3073-3080.

    DENG Huoying, LIANG Xin, GU Yizhuo, et al. Effect of MWCNTs-CNTs on mechanical properties of epoxy resin and multi-scale MWCNTs carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3073-3080(in Chinese).
    [21]
    ROMASANTA L J, LÓPEZ-MANCHADO M A, VERDEJO R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective[J]. Progress in Polymer Science,2015,51:188-211. doi: 10.1016/j.progpolymsci.2015.08.002
    [22]
    MADSEN F B, DAUGAARD A E, HVILSTED S, et al. The current state of silicone-based dielectric elastomer transducers[J]. Macromolecular Rapid Communications,2016,37(5):378-413. doi: 10.1002/marc.201500576
    [23]
    HUANG J J, WANG F, MA L, et al. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations[J]. Chemical Engineering Journal,2022,428:131354. doi: 10.1016/j.cej.2021.131354
    [24]
    赵中国, 艾桃桃, 刘国瑞, 等. 多壁碳纳米管-聚氨酯/聚丙烯复合材料导电网络结构的演变与性能调控[J]. 复合材料学报, 2021, 38(3):770-779.

    ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution and performance control of conductive network structure of multi-walled carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica,2021,38(3):770-779(in Chinese).
    [25]
    OPRIS D M, MOLBERG M, WALDER C, et al. New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil[J]. Advanced Functional Materials,2011,21(18):3531-3539. doi: 10.1002/adfm.201101039
    [26]
    LI Y, HASHIMOTO M. PVC gel based artificial muscles: Characterizations and actuation modular constructions[J]. Sensors and Actuators A: Physical,2015,233:246-258. doi: 10.1016/j.sna.2015.07.010
    [27]
    石磊, 徐学诚. 多壁碳纳米管/聚苯乙烯-聚氯乙烯复合材料的导电特性[J]. 复合材料学报, 2013, 30(4):7-12.

    SHI Lei, XU Xuecheng. Electrical conductivity of multi-walled carbon nanotubes/polystyrene-polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica,2013,30(4):7-12(in Chinese).
    [28]
    ROSSET S, SHEA H R. Flexible and stretchable electrodes for dielectric elastomer actuators[J]. Applied Physics A,2013,110(2):281-307. doi: 10.1007/s00339-012-7402-8
    [29]
    闫茜茜, 何田. 一种基于介电弹性体驱动的软体机器人设计方法[J]. 青岛大学学报(工程技术版), 2021, 36(3):1-5.

    YAN Qianqian, HE Tian. A design method of software robot based on dielectric elastomer drive[J]. Journal of Qingdao University (Engineering & Technology Edition),2021,36(3):1-5(in Chinese).
    [30]
    KEPLINGER C, KALTENBRUNNER M, ARNOLD N, et al. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability[J]. Proceedings of the National Academy of Sciences,2010,107(10):4505-4510. doi: 10.1073/pnas.0913461107
    [31]
    FOO C C, CAI S, KOH S J A, et al. Model of dissipative dielectric elastomers[J]. Journal of Applied Physics,2012,111:034102. doi: 10.1063/1.3680878
    [32]
    何青松, 于敏, 丁燕, 等. 正交实验设计优化离子聚合物金属复合材料的力输出性能[J]. 科学通报, 2011, 56(14):1144-1152.

    HE Qingsong, YU Min, DING Yan, et al. Force optimization of ionic polymer metal composite actuators by an orthogonal array method[J]. Chinese Science Bulletin,2011,56(14):1144-1152(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (1072) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return