Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 625-636. doi: 10.13801/j.cnki.fhclxb.20220120.008
Citation: LI Shujian, ZHOU Yongchao, CHEN Rong, et al. Simulation and experimental study of CFRP micro cutting considering voids defects[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 625-636. doi: 10.13801/j.cnki.fhclxb.20220120.008

Simulation and experimental study of CFRP micro cutting considering voids defects

doi: 10.13801/j.cnki.fhclxb.20220120.008
Funds:  National Natural Science Foundation of China (51975208; 51775184; 51805163)
  • Received Date: 2021-11-22
  • Accepted Date: 2022-01-05
  • Rev Recd Date: 2021-12-25
  • Available Online: 2022-01-20
  • Publish Date: 2023-01-15
  • Carbon fiber-reinforced plastic (CFRP) composites have been widely used in aerospace and other most advanced fields. It is difficult to avoid voids and other defects in the manufacturing process of CFRP, which will have a certain impact on the subsequent machining. Based on the consideration of the voids defects in the process of CFRP forming, a CFRP micro cutting simulation model with void defects was established from the fiber-resin-interface scale by using the finite element simulation method. The micro cutting behavior of CFRP with different fiber orientations under different void content conditions was studied, and the correctness of the simulation model was verified by experiments. The results show that the existence of voids will increase the ‘virtual cutting’ phenomenon of the tool, which will have an impact on the cutting force, material damage, sub-surface damage and material energy in the cutting process of CFRP. The cutting force decreases with the increase of void content, and the tendency of fibers at the edge of voids to produce overall fracture will increase. The voids have little effect on the damage under the machined surface of CFRP with 0°, 45° and 135° fiber orientations. The void content higher than 3vol% has a great effect on the damage under the machined surface when the fiber orientation is 90°. In terms of energy dissipation inside the material, the total dissipated energy in ‘forward cut’ (fiber orientation angle less than 90°) is lower than ‘reverse cut’, furthermore, the total dissipated energy decreases with the increase of void content.

     

  • loading
  • [1]
    邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. doi: 10.13801/j.cnki.fhclxb.20160323.003

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160323.003
    [2]
    HEGDE S, SATISH SHENOY B, CHETHAN K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings,2019,19:658-662. doi: 10.1016/j.matpr.2019.07.749
    [3]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12.

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):12(in Chinese).
    [4]
    GEIER N, DAVIM J P, SZALAY T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105552. doi: 10.1016/j.compositesa.2019.105552
    [5]
    LI S J, ZHAN L H, CHEN R, et al. The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates[J]. Fibers and Polymers,2014,15(11):2404-2409. doi: 10.1007/s12221-014-2404-0
    [6]
    FARHANG L, FERNLUND G. Void and porosity characterization of uncured and partially cured prepregs[J]. Journal of Composite Materials,2016,50(7):937-948. doi: 10.1177/0021998315583924
    [7]
    GU Y Z, LI M, ZHANG Z G, et al. Void formation model and measuring method of void formation condition during hot pressing process[J]. Polymer Composites,2010,31(9):1562-1571. doi: 10.1002/pc.20944
    [8]
    CARRERA E, PETROLO M, NAGARAJ M H, et al. Evaluation of the influence of voids on 3D representative volume elements of fiber-reinforced polymer composites using CUF micromechanics[J]. Composite Structures,2020,254:112833. doi: 10.1016/j.compstruct.2020.112833
    [9]
    李树健, 湛利华, 周源琦, 等. 基于图像处理的碳纤维增强树脂基复合材料固化压力-缺陷-力学性能建模与评估[J]. 复合材料学报, 2018, 35(12):3368-3376. doi: 10.13801/j.cnki.fhclxb.20180317.001

    LI Shujian, ZHAN Lihua, ZHOU Yuanqi, et al. Modeling and evaluation of curing pressurer-defects-mechanical properties of carbon fiber composites based on image processing[J]. Acta Materiae Compositae Sinica,2018,35(12):3368-3376(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180317.001
    [10]
    ZHANG D, HEIDER D, GILLESPIE J W. Determination of void statistics and statistical representative volume elements in carbon fiber-reinforced thermoplastic prepregs[J]. Journal of Thermoplastic Composite Materials,2017,30(8):1103-1119. doi: 10.1177/0892705715618002
    [11]
    任明法, 常鑫. 基于两尺度代表体元的含孔隙复合材料单层板弹性常数预测[J]. 复合材料学报, 2016, 33(5):1111-1118. doi: 10.13801/j.cnki.fhclxb.20160121.004

    REN Mingfa, CHANG Xin. Prediction for elastic coefficients of composite single layer laminate containing voids based on two-scale representative volume elements[J]. Acta Materiae Compositae Sinica,2016,33(5):1111-1118(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160121.004
    [12]
    WANG D Y, HE X D, XU Z H, et al. Study on damage evaluation and machinability of UD-CFRP for the orthogonal cutting operation using scanning acoustic microscopy and the finite element method[J]. Materials,2017,10(2):204. doi: 10.3390/ma10020204
    [13]
    LI H N, WANG J P, WU C Q, et al. Damage behaviors of unidirectional CFRP in orthogonal cutting: A comparison between single- and multiple-pass strategies[J]. Composites Part B: Engineering,2020,185:107774. doi: 10.1016/j.compositesb.2020.107774
    [14]
    高汉卿, 贾振元, 王福吉, 等. 基于细观仿真建模的CFRP细观破坏[J]. 复合材料学报, 2016, 33(4):758-767. doi: 10.13801/j.cnki.fhclxb.20150907.003

    GAO Hanqing, JIA Zhenyuan, WANG Fuji, et al. Mesoscopic failure of CFRP based on mesoscopic simulation modeling[J]. Acta Materiae Compositae Sinica,2016,33(4):758-767(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150907.003
    [15]
    王福吉, 胡海波, 张博宇, 等. 复合材料成型分层缺陷在钻削横刃挤压阶段的扩展行为[J]. 机械工程学报, 2019, 55(11):197-204. doi: 10.3901/JME.2019.11.197

    WANG Fuji, HU Haibo, ZHANG Boyu, et al. The expansion behavior of composite delamination defect during the chisel edge extrusion stage[J]. Journal of Mechanical Engineering,2019,55(11):197-204(in Chinese). doi: 10.3901/JME.2019.11.197
    [16]
    ZHANG S, LI Y, LUO M, et al. Modelling of nonlinear and dual-modulus characteristics and macro-orthogonal cutting simulation of unidirectional carbon/carbon composites[J]. Composite Structures,2022,280:114928. doi: 10.1016/j.compstruct.2021.114928
    [17]
    郭芳芳, 肖建章. 基于三相微观结构的纤维复合材料切削仿真研究[J]. 工具技术, 2017, 51(6):26-30. doi: 10.3969/j.issn.1000-7008.2017.06.005

    GUO Fangfang, XIAO Jianzhang. Study on cutting simulation of fiber reinforced composite materials based on three phase microstructure[J]. Tool Engineering,2017,51(6):26-30(in Chinese). doi: 10.3969/j.issn.1000-7008.2017.06.005
    [18]
    ZENIA S, BEN AYED L, NOUARI M, et al. Numerical analysis of the interaction between the cutting forces, induced cutting damage, and machining parameters of CFRP composites[J]. The International Journal of Advanced Manufacturing Technology,2015,78(1-4):465-480. doi: 10.1007/s00170-014-6600-2
    [19]
    LI C P, ZHAO Y F, QIU X Y, et al. Interface mechanical damage mechanism in machining carbon fiber-reinforced plastic/Ti stacks based on a three-dimensional microscopic oblique cutting model[J]. Composite Structures,2022,279:114737. doi: 10.1016/j.compstruct.2021.114737
    [20]
    CHEN R, LI S J, LI P N, et al. Effect of fiber orientation angles on the material removal behavior of CFRP during cutting process by multi-scale characterization[J]. The International Journal of Advanced Manufacturing Technology,2020,106(11-12):5017-5031. doi: 10.1007/s00170-020-04968-w
    [21]
    ISBILIR O, GHASSEMIEH E. Finite element analysis of drilling of carbon fibre reinforced composites[J]. Applied Composite Materials,2012,19(3-4):637-656. doi: 10.1007/s10443-011-9224-9
    [22]
    华志恒, 周晓军, 刘继忠. 碳纤维复合材料(CFRP)孔隙的形态特征[J]. 复合材料学报, 2005, 22(6):103-107. doi: 10.3321/j.issn:1000-3851.2005.06.018

    HUA Zhiheng, ZHOU Xiaojun, LIU Jizhong. Morphology of pores in carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2005,22(6):103-107(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.06.018
    [23]
    CAMANHO P P, ARTEIRO A. Analysis models for polymer composites across different length cales[M]. Cham: Springer International Publishing, 2016: 199-279.
    [24]
    YAN X Y, REINER J, BACCA M, et al. A study of energy dissipating mechanisms in orthogonal cutting of UD-CFRP composites[J]. Composite Structures,2019,220:460-472. doi: 10.1016/j.compstruct.2019.03.090
    [25]
    秦旭达, 朱圣富, 李士鹏, 等. 不同纤维方向角时碳纤维增强树脂基复合材料切削力建模[J]. 宇航材料工艺, 2020, 50(6):31-40.

    QIN Xuda, ZHU Shengfu, LI Shipeng, et al. Modeling of cutting force for carbon fiber reinforced plastic with different fiber orientation angle[J]. Aerospace Materials & Technology,2020,50(6):31-40(in Chinese).
    [26]
    MCGREGOR C, VAZIRI R, XIAO X. Finite element modelling of the progressive crushing of braided composite tubes under axial impact[J]. International Journal of Impact Engineering,2010,37(6):662-672. doi: 10.1016/j.ijimpeng.2009.09.005
    [27]
    WILLIAMS J G, PATEL Y. Fundamentals of cutting[J]. Interface Focus,2016,6(3):20150108. doi: 10.1098/rsfs.2015.0108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (998) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return