Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Huaguan, DING Ying, ZHANG Yue, et al. Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 601-612. doi: 10.13801/j.cnki.fhclxb.20220120.001
Citation: LI Huaguan, DING Ying, ZHANG Yue, et al. Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 601-612. doi: 10.13801/j.cnki.fhclxb.20220120.001

Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites

doi: 10.13801/j.cnki.fhclxb.20220120.001
Funds:  National Natural Science Foundation of China (52175327); 2021 Jiangsu Province Postgraduate Practice Innovation Plan Project (SJCX21_0918); Jiangsu Qing-Lan Project; Young Elite Scientists Sponsorship Program by CAST (2021QNRC001); Natural Science Foundation of the Jiangsu Higher Education Institution of China (22KJA430006)
  • Received Date: 2021-11-22
  • Accepted Date: 2022-01-05
  • Rev Recd Date: 2021-12-21
  • Available Online: 2022-01-20
  • Publish Date: 2023-01-15
  • The preparation and mechanical properties of glass fiber 3D fabric reinforced epoxy foam composites (GF-Fabric/EP composites) were studied in order to further improve the bearing capacity and comprehensive properties of foam sandwich composite materials and realize its application in rail transit and automobile industry. The GF-Fabric/EP composite and its sandwich structure were fabricated. The failure behavior of GF-Fabric/EP composite and its sandwich structure were explored to reveal the reinforcing mechanism of the 3D fabric. The results show that the introduction of 3D fabric can significantly improve the strength, stiffness and failure strain of GF Fabric/EP composites. However, under different load-bearing conditions, each yarn plays a different role and effect. The properties, dimensions and surface/core interface properties of panel and core materials are important factors affecting the mechanical properties and failure characteristics of GF Fabric/EP sandwich composites. Taking the bending properties under three-point loading as an example, for different GF Fabric/EP sandwich composites, it is necessary to adjust the span thickness ratio and specimen size and obtain ideal failure characteristics before effective and reasonable evaluation of their bending properties or interlaminar shear properties.

     

  • loading
  • [1]
    王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3):601-608. doi: 10.13801/j.cnki.fhclxb.20190918.001

    WANG Baoqin, WANG Monan, LIU Changxi. Stability of honeycomb sandwich composite structure under axial compression based on multi-scale method[J]. Acta Materiae Compositae Sinica,2020,37(3):601-608(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190918.001
    [2]
    HU Y, ZHU J, WANG J H, et al. Interfacial failure in stitched foam sandwich composites[J]. Matrials,2021,14(9):2275. doi: 10.3390/ma14092275
    [3]
    CAPRICHO J C, FOX B, HAMEED N. Multifunctionality in epoxy resins[J]. Polymer Reviews,2020,60(1):1-41. doi: 10.1080/15583724.2019.1650063
    [4]
    WANG Y, CHEN Z H, YU F. Preparation of epoxy-acrylic latex based on bisphenol f epoxy resin[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry,2018,55(2):205-212. doi: 10.1080/10601325.2017.1410065
    [5]
    ZHANG Z Y, ZHANG W H, LI D S, et al. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method[J]. International Journal of Molecular Sciences,2015,16(1):2239-2251. doi: 10.3390/ijms16012239
    [6]
    余为, 薛海龙, 钱蒙, 等. 浸泡腐蚀对玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(6):1688-1695.

    YU Wei, XUE Hailong, QIAN Meng, et al. Effect of immersion corrosion on the bending properties of glass fiber hollow glass bead/epoxy composite foam[J]. Acta Materiae Compositae Sinica,2015,32(6):1688-1695(in Chinese).
    [7]
    SHEN H B, NUTT S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906. doi: 10.1016/S1359-835X(03)00136-2
    [8]
    YA B, WANG Y S, MENG L G, et al. Study on the performance of syntactic foam reinforced by hybrid functionalized carbon nanotubes[J]. Journal of Applied Polymer Science,2019,137(16):48586. doi: 10.1002/app.48586
    [9]
    CHEN Q H, DU S R, JIANG Z Y, et al. Mechanical properties of foam sandwich with chopped-glass-fiber/carbon nanotube reinforced hierarchical structure interlayer[J]. Polymer Composites,2020,41(8):3411-3420. doi: 10.1002/pc.25630
    [10]
    张靠民, 顾轶卓, 李敏, 等. 快速固化环氧树脂及其碳纤维/环氧复合材料性能[J]. 复合材料学报, 2013, 30(6):21-27. doi: 10.3969/j.issn.1000-3851.2013.06.004

    ZHANG Kaomin, GU Yizhuo, LI Min, et al. Rapid curing epoxy resin and the properties of carbon fiber/epoxy composite[J]. Acta Materiae Compositae Sinica,2013,30(6):21-27(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.004
    [11]
    马元春, 俸翔, 卢子兴, 等. 缝纫泡沫夹芯复合材料板的稳定性分析[J]. 复合材料学报, 2011, 28(2):201-205.

    MA Yuanchun, FENG Xiang, LU Zixing, et al. Stability analysis of stitched foam-core composite sandwich plates[J]. Acta Materiae Compositae Sinica,2011,28(2):201-205(in Chinese).
    [12]
    QUINTANA J M, MOWER T M. Thermomechanical behavior of sandwich panels with graphitic-foam cores[J]. Materials & Design,2017,135:411-422. doi: 10.1016/j.matdes.2017.09.021
    [13]
    王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2):252-259.

    WANG Cong, ZHU Lvtao, GAO Xiaoping. Mechanical properties of nano toughened three-dimensional orthogonal glass fiber woven fabric reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2020,37(2):252-259(in Chinese).
    [14]
    邓富泉, 张丽, 刘少祯, 等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863.

    DENG Fuquan, ZHANG Li, LIU Shaozhen, et al. Mechanical properties of unidirectional continuous carbon fiber glass fiber interlayer hybrid reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1857-1863(in Chinese).
    [15]
    ZHANG T T, YAN Y, LI J F, et al. Low-velocity impact of honeycomb sandwich composite plates[J]. Journal of Reinforced Plastics and Composites,2015,35(1):8-32. doi: 10.1177/0731684415612573
    [16]
    ANANDAN S, DHALIWAL G, GANGULY S, et al. Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation[J]. Journal of Sandwich Structures & Materials,2020,22(6):1838-1858.
    [17]
    KULKARNI N, MAHFUZ H, JEELANI S, et al. Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading[J]. Composite Structure,2003,59(4):499-505. doi: 10.1016/S0263-8223(02)00249-0
    [18]
    中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flat compressive properties of sandwich structures or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [19]
    中国国家标准化管理委员会. 夹层结构平拉强度试验方法: GB/T 1452—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flat tensile strength of sandwich structures: GB/T 1452—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20]
    中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of sandwich structures: GB/T 1456—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21]
    中国国家标准化管理委员会. 硬质泡沫塑料 弯曲性能的测定 第2部分: 弯曲强度和表观弯曲弹性模量的测定: GB/T 8812.2—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Determination of flexural properties of rigid cellular plastics second parts: Determination of flexural strength and apparent flexural modulus of elasticity: GB/T 8812.2—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [22]
    HAN S H, LU A H, LIU Y J. Study on multi-axial mechanical properties of a polyurethane foam and experimental verification[C]//International Conference on Advanced Design and Manufacturing Engineering. Guangzhou: Trans Tech Publications, 2011: 299-306.
    [23]
    BELINGARDI G, MEHDIPOUR H, MANGINO E, et al. Progressive damage analysis of a rate-dependent hybrid composite beam[J]. Composite Structures,2016,154:433-442. doi: 10.1016/j.compstruct.2016.07.055
    [24]
    朱国华. 金属/碳纤维混合材料薄壁结构耐撞性研究[D]. 长沙: 湖南大学, 2018.

    ZHU Guohua. Study on crashworthiness of thin-walled structures made of metal/carbon fiber composites[D]. Changsha: Hunan University, 2018(in Chinese).
    [25]
    HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [26]
    American Society for Testing and Materials. Standard test methods for tension testing of metallic materials: ASTM E8/E 8M-08[S]. West Conshohocken: American Society for Testing and Materials International, 2008.
    [27]
    YASAEE M, BOND I P, TRASK R S, et al. Mode I interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43(1):198-207. doi: 10.1016/j.compositesa.2011.10.009
    [28]
    KANG M S, JEON M H, KIM I G, et al. The characteristics for mode I interlaminar and intralaminar fractures of cross-ply carbon/epoxy composite laminates based on energy release rate[J]. Composites Research,2019,32(1):6-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (1176) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return