Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
GAO Yong, WANG Jinjin, ZHA Bailin, et al. Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002
Citation: GAO Yong, WANG Jinjin, ZHA Bailin, et al. Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 472-484. doi: 10.13801/j.cnki.fhclxb.20220117.002

Effect of ablation time on ablation mechanism of C/C-SiC composites in hypersonic and oxygen-enriched environment

doi: 10.13801/j.cnki.fhclxb.20220117.002
Funds:  Natural Science Funding of Shaanxi (2021JM-250)
  • Received Date: 2021-11-22
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2021-12-23
  • Available Online: 2022-01-18
  • Publish Date: 2023-01-15
  • In order to study the effect of ablation time on the ablation mechanism of C/C-SiC composites under a hypersonic oxygen-rich environment, the dynamic ablation mechanism of the needled carbon/carbon-silicon carbide composites prepared by “chemical vapor infiltration + precursor immersion pyrolysis” hybrid process was studied by the hypersonic oxygen-enriched ablation test technology in this paper, and the ablation surface morphology of the composites were investigated by scanning electron microscopy. The results show that, the C/C-SiC composites can resist the oxidation working environment of high temperature, high pressure and hypersonic gas jets in a short time under the extremely harsh hypersonic oxygen-enriched ablation environment. The mass ablation rate of C/C-SiC composites after 10 s, 20 s, 30 s, 40 s and 50 s ablation by hypersonic oxygen-enriched ablation are 0.021 g/s, 0.025 g/s, 0.027 g/s, 0.026 g/s and 0.034 g/s, respectively. The dynamic ablation behavior of the C/C-SiC composites under the hypersonic oxygen-enriched environment is synergistic effects of thermo-oxidation ablation and mechanical erosion. In the initial stage, the existence of the SiO2 protective film effectively prevents the diffusion of oxidizing components into the matrix, and only the central area of the material is slightly thermal oxidative ablation. In the middle test, the ablation of the material is mainly manifested in the combined effect of thermo-oxidation ablation and mechanical erosion, and gradually transition from mainly thermal oxidative ablation to mainly mechanical erosion. In the later stage of the ablation test, the further reaction of the matrix makes the ablation mechanism of the material mainly manifested as the large-area flaking of the fiber and matrix.

     

  • loading
  • [1]
    GLASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio, 2008: 2682.
    [2]
    李崇俊. X-43A高超声速飞行器C/C热防护涂层结构分析[J]. 高科技纤维与应用, 2015, 40(4):26-40. doi: 10.3969/j.issn.1007-9815.2015.04.004

    LI Chongjun. Thermal protection coatings of C/C composites in X-43A hypersonic vehicles[J]. Hi-Tech Fiber & Application,2015,40(4):26-40(in Chinese). doi: 10.3969/j.issn.1007-9815.2015.04.004
    [3]
    王璐, 王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺, 2016, 46(1):1-6. doi: 10.3969/j.issn.1007-2330.2016.01.001

    WANG Lu, WANG Youli. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials & Technology,2016,46(1):1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.001
    [4]
    JOHNSON S M, GASCH M J, LEISER D, et al. Development of new TPS at NASA ames research center[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio, 2008: 2560.
    [5]
    GLASS D E. Physical challenges and limitations confronting the use of UHTSs on hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco, California, 2011: 2304.
    [6]
    WALKER S P, SULLWAN B J. Sharp refractory composite leading edges on hypersonic vehicles[C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, VA, 2003: 6915.
    [7]
    BOUQUET C, FISCHER R, LARRIEU J M, et al. Composite technologies development status for scramjet applications[C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, VA, 2003: 6917.
    [8]
    BOUQUET C, FISCHER R, THEBAULT J, et al. Composite technologies development status for scramjet[C]. 13th AIAA/CIRA International Space Planes and Hypersonics Systems and Technologies. Capua, Italy, 2005: 3431.
    [9]
    ZHANG L, FU Q G, TAN B Y, et al. Ablation behaviour of C/C and C/C-ZrC-SiC composites with cone-shaped holes under an oxyacetylene flame[J]. Corrosion Science,2016,102:84-92. doi: 10.1016/j.corsci.2015.09.022
    [10]
    LIU L P, YANG L W, ZHAO C H, et al. Oxide-scale evolution and dynamic oxidation mechanism of ZrB2-SiC in high-enthalpy plasma wind tunnel[J]. Journal of the European Ceramic Society,2021,41(7):3911-3921. doi: 10.1016/j.jeurceramsoc.2021.02.006
    [11]
    JIA J H, XIAO J, XIONG D G, et al. Ablation properties of Cf/SiCp-Al self-transpiration cooling composites[J]. Materials Letters,2021,285:129022. doi: 10.1016/j.matlet.2020.129022
    [12]
    SILVA R J, MACIEL H S, ESSIPTCHOUK A M. Comparison of the ablation mechanism of C/C-SiC composite under atmospheric and low pressure[C]. 13th International Ceramics Congress. Montecatini Terme, Italy: Trans Tech Publishers, 2014: 134-139.
    [13]
    SHI Y A, ZHA B L, SU Q D, et al. Thermal performance and ablation characteristics of C/C-SiC for thermal protection of hypersonic vehicle[J]. Journal of the European Ceramic Society,2021,41(11):5427-5436. doi: 10.1016/j.jeurceramsoc.2021.03.015
    [14]
    王玲玲, 嵇阿琳, 黄寒星, 等. 三维针刺C/C-SiC复合材料的烧蚀性能[J]. 固体火箭技术, 2012, 35(4):532-535.

    WANG Lingling, JI Alin, HUANG Hanxing, et al. Ablation properties of three dimensional needled C/C-SiC composites[J]. Journal of Solid Rocket Technology,2012,35(4):532-535(in Chinese).
    [15]
    王玲玲, 吴玉燕, 嵇阿琳, 等. 固体冲压发动机环境下C/C-SiC喷管的烧蚀行为及重复性使用分析[J]. 复合材料学报, 2017, 34(7):1569-1574.

    WANG Lingling, WU Yuyan, JI Alin, et al. Ablation behavior and repetitive-use analysis of the C/C-SiC composites nozzle for solid propellant ramjet[J]. Acta Materiae Compositae Sinica,2017,34(7):1569-1574(in Chinese).
    [16]
    GLASS D E, CAPRIOTTI D, REIMER T, et al. Testing of DLR C/C-SiC and C/C for HIFiRE 8 scramjet combustor[C]. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Atlanta, GA, 2014: 3089.
    [17]
    SHI Y A, ZHA B L, SU Q D, et al. Effects of oxygen content on the ablation behavior of silicone rubber-based insulation material[J]. International Journal of Aerospace Engineering, 2019, 2019: 6592972.
    [18]
    WU X J, YANG J, ZHEN R, et al. Effect of ablation profile structure on plasma ablation performance of needle punched C/C throat lining prepared by CVI+HPIC process[J]. Journal of Inorganic Materials,2020,35(6):654-660.
    [19]
    高勇, 查柏林, 王金金, 等. 固体火箭发动机C/C复合材料烧蚀试验技术研究[J]. 高科技纤维与应用, 2020, 45(4):1-7. doi: 10.3969/j.issn.1007-9815.2020.04.001

    GAO Yong, ZHA Bailin, WANG Jinjin, et al. Research on ablation test technology of C/C composites in solid rocket motor[J]. Hi-Tech Fiber and Application,2020,45(4):1-7(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.04.001
    [20]
    喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2):14-21.

    YU Chengzhang, LIU Weihua. Research status of aero- heating prediction technology for hypersonic aircraft[J]. Aeronautical Science & Technology,2021,32(2):14-21(in Chinese).
    [21]
    王亮, 周玲. 基于改进的k-ω-γ转捩模式预测高超声速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3):51-61. doi: 10.7638/kqdlxxb-2019.0146

    WANG Liang, ZHOU Ling. Prediction of characteristics of hypersonic vehicle by improved k-ω-γ transition model[J]. Acta Aerodynamica Sinica,2021,39(3):51-61(in Chinese). doi: 10.7638/kqdlxxb-2019.0146
    [22]
    党文伟, 李晓升. 高超声速飞行器烧蚀型防热涂层研究进展[J]. 涂料技术与文摘, 2020, 41(3):33-36.

    DANG Wenwei, LI Xiaosheng. Research progress in ablative thermal protection coatings for hypersonic vehicle[J]. Coating and Protection,2020,41(3):33-36(in Chinese).
    [23]
    黄礼铿, 胡广军, 胡豹, 等. 固体火箭超燃冲压发动机燃烧试验研究[J]. 固体火箭技术, 2020, 43(5):549-553.

    HUANG Likeng, HU Guangjun, HU Bao, et al. Experiment on combustion of solid rocket scramjet[J]. Journal of Solid Rocket Technology,2020,43(5):549-553(in Chinese).
    [24]
    王金金. 多相流环境下硅橡胶复合材料烧蚀机理研究[D]. 西安: 火箭军工程大学, 2019.

    WANG Jinjin. Research on ablation mechanism of silicone rubber composites in multiphase flow environment[D]. Xi'an: Rocket Force University of Engineering, 2019(in Chinese).
    [25]
    尹健, 熊翔, 张红波, 等. 3D C/C复合材料的电弧驻点烧蚀及机理分析[J]. 中南大学学报(自然科学版), 2007, 38(1):14-18. doi: 10.3969/j.issn.1672-7207.2007.01.003

    YIN Jian, XIONG Xiang, ZHANG Hongbo, et al. Ablation performance and mechanism of 3D C/C composites[J]. Journal of Central South University (Science and Technology),2007,38(1):14-18(in Chinese). doi: 10.3969/j.issn.1672-7207.2007.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1105) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return