Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
KOU Baohong, LU Dehong, GONG Wenhao, et al. Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 499-509. doi: 10.13801/j.cnki.fhclxb.20211230.004
Citation: KOU Baohong, LU Dehong, GONG Wenhao, et al. Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 499-509. doi: 10.13801/j.cnki.fhclxb.20211230.004

Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite

doi: 10.13801/j.cnki.fhclxb.20211230.004
Funds:  National Natural Science Foundation of China (51865024)
  • Received Date: 2021-11-16
  • Accepted Date: 2021-12-20
  • Rev Recd Date: 2021-12-16
  • Available Online: 2021-12-31
  • Publish Date: 2023-01-15
  • Conventional wear-resistant metal matrix composites generally suffer from low plastic toughness. The spherical interpenetrating architecture design of Al2O3 ceramic particle (Al2O3p) reinforcement high manganese steel composites was carried out, and the effects of the architectured parameters, modes and heat treatment on the compressive properties of the composites were investigated. Al2O3p/high manganese steel spherical interpenetrating composites with three architectured parameters (ball diameter φ of 6 mm, 7 mm, 8 mm) combined with two architectured modes (parallel and staggered), uniformly dispersed composite, and matrix materials were prepared. The results show that the compressive properties of the materials decrease with the increase of the architectured parameters (volume fraction of the composite zone) under the same architectured mode, with the best yield strength, compressive strength, and (under compressive strength) strain for φ6 materials, increasing by 203.8%, 236.1%, and 134.8%, respectively compared with the uniform dispersed composites. The yield strength increases by 107.5% compared with the matrix materials. Under the same architectured parameter, the yield strength, compressive strength and strain of staggered-arrany are increased by 10.9%, 28.5%, and 16.3%, respectively, compared with the parallel-arrany. The yield strength is reduced by 35.2%, the compressive strength is increased by 11.0% and the strain is increased by 163.1% for staggered-arrany composites after water toughness treatment. Cracks tend to sprout and expand at the interface between the matrix and composite zones, but the matrix can hinder the crack expansion. Staggered-arrany increases the minimum spacing of the composites zones and enhances plasticity.

     

  • loading
  • [1]
    MORALES-ESPEJEL G E, RYCERZ P, KADIRIC A, et al. Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear[J]. Wear,2018,398-399:99-115. doi: 10.1016/j.wear.2017.11.016
    [2]
    MARIMUTHU K P, HAN J, JEONG U, et al. Study on tribological characteristics of Zr-based BMG via nanoscratch techniques[J]. Wear,2021,486-487:204067. doi: 10.1016/j.wear.2021.204067
    [3]
    MACHADO P C, PEREIRA J I, SINATORA A, et al. Abrasion wear of austenitic manganese steels via jaw crusher test[J]. Wear,2021,476:203726. doi: 10.1016/j.wear.2021.203726
    [4]
    胥长龙, 卢德宏, 唐露, 等. 复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响[J]. 复合材料学报, 2020, 37(9):2223-2229. doi: 10.13801/j.cnki.fhclxb.20200220.002

    XU Changlong, LU Dehong, TANG Lu, et al. Effect of composite volume fraction on impact wear proper ties of zirconium oxide toughene alumina particles/40Cr architecture composites[J]. Acta Materiae Compositae Sinica,2020,37(9):2223-2229(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200220.002
    [5]
    PAGOUNIS E, LINDROOS V K, TALVITIE M. Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites[J]. Metallurgical and Materials Transactions A,1996,27:4171-4181. doi: 10.1007/BF02595665
    [6]
    王娟, 郑开宏. ZTA颗粒增强铁基复合材料的高温磨料磨损性能研究[J]. 热加工工艺, 2018, 47(10):101-105, 109.

    WANG Juan, ZHENG Kaihong. Study on high temperature abrasive wear properties of ZTA particle reinforced iron matrix composites[J]. Hot Working Technology,2018,47(10):101-105, 109(in Chinese).
    [7]
    宁嘉沛, 郑开宏, 王娟, 等. TiC增强高锰钢基复合材料的组织与磨料磨损性能[J]. 稀有金属材料与工程, 2020, 49(7):2407-2416.

    NING Jiapei, ZHENG Kaihong, WANG Juan, et al. Microstructure and abrasive wear properties of TiC-reinforced hadfield steel matrix composites[J]. Rare Metal Materials and Engineering,2020,49(7):2407-2416(in Chinese).
    [8]
    陈奉锐, 山泉, 李祖来, 等. 重熔温度对WCp/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113.

    CHEN Fengrui, SHAN Quan, LI Zulai, et al. Effect of remelting temperature on interface characteristics and com pression fracture mechanism of WCp/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
    [9]
    LI Y, PHUNG L, WILLIAMS C. 3D multiscale modeling of fracture in metal matrix composites[J]. Journal of Materials Research,2019,34(13):2285-2294. doi: 10.1557/jmr.2019.60
    [10]
    GUO R F, SHEN P, GUO N, et al. Al-7Si-5Cu/Al2O3-ZrO2 laminated composites with excellent and anisotropic wear resistance[J]. Advanced Engineering Materials,2018,20:1800540. doi: 10.1002/adem.201800540
    [11]
    卢德宏, 蒋业华. 构型陶瓷/钢铁耐磨复合材料研究进展[J]. 精密成型工程, 2021, 13(3):40-48.

    LU Dehong, JIANG Yehua. Research progress of wear performance of ceramic particulates reinforced iron matrix architecture composites[J]. Journal of Netshape Forming Engineering,2021,13(3):40-48(in Chinese).
    [12]
    LEMSTER K, DELPORTE A, GRAULE T, et al. Activation of alumina foams for fabricating MMCs by pressureless infiltration[J]. Ceramics International,2007,33:1179-1185. doi: 10.1016/j.ceramint.2006.04.002
    [13]
    ZHOU M J, SUI Y D, CHONG X Y, et al. Wear resistance mechanism of ZTAP/HCCI composites with a honeycomb structure[J]. Metals,2018,8(8):588. doi: 10.3390/met8080588
    [14]
    赵馨月, 卢德宏, 郭红星, 等. 球状结构钢基MMCs/钢三维互穿网络复合材料的制备[J]. 特种铸造及有色合金, 2016, 36(8):852-855.

    ZHAO Xinyue, LU Dehong, GUO Hongxing, et al. Preparation of composites of MMCs and steel with three dimensional inter-penetrating network structure[J]. Special Casting & Nonferrous Alloys,2016,36(8):852-855(in Chinese).
    [15]
    MIKE A. Designing architectured materials[J]. Scripta Materialia,2013,68(1):4-7. doi: 10.1016/j.scriptamat.2012.04.033
    [16]
    XIE H, JIN Y X, NIU M Y, et al. Effect of multilayer graphene/nano-Fe2O3 composite additions on dry sliding wear behavior of titanium matrix composites[J]. Journal of Iron and Steel Research International,2020,27:1117-1126. doi: 10.1007/s42243-020-00460-7
    [17]
    HAN W, LI K, HU F, et al. Microstructure and mechanical properties of Mg-2.5Si-xCe in-situ particle reinforced composites prepared by rapid solidification process[J]. Results in Physics,2019,15:102509. doi: 10.1016/j.rinp.2019.102509
    [18]
    陈建华, 刘维良, 周华, 等. TiCp/W金属基复合材料的制备与性能研究[J]. 稀有金属与材料工程, 2017, 46(1): 242-246.

    CHEN Jianhua, LIU Weiliang, ZHOU Hua, et al. Study on preparation and properties of TiCp/W metal matrix composite[J]. Rare Metal Materials and Engineering, 2017, 46(1): 242-246(in Chinese).
    [19]
    NIU G, SUI Y D, ZENG H B, et al. Effect of centrifugal casting temperature on the microstructure and properties of ZTAP/HCCI matrix composites[J]. Materials Research Express,2021,8:26513. doi: 10.1088/2053-1591/abe012
    [20]
    韦鸿铭. ZTAp/高铬铸铁基蜂窝构型复合材料热物理性质和力学性能研究[D]. 昆明: 昆明理工大学, 2019.

    WEI Hongming. Study on thermophysical properties and mechanical properties of ZTAp/high chromium cast iron based honeycomb composites[D]. Kunming: Kunming University of Science and Technology, 2019(in Chinese).
    [21]
    GONG W H, LU D H, HE G Y. Effect of volume fraction of metal matrix composites framework on compressive mechanical properties of 3D interpenetrating ZTAp/40Cr architectured composites[J]. Journal of Iron and Steel Research International, 2022, 5(5): 859-865.
    [22]
    BAI M M, LI W X, LI Y H, et al. Preparation and properties of hot-pressed Al2O3/Al-steel mesh-Al laminated composites[J]. Journal of Inorganic Materials,2014,29(12):1339-1344. doi: 10.15541/jim20140410
    [23]
    LU D H, HE G Y, WANG L K, et al. Compressive properties and cracking behaviour of 3D interpenetrating hierarchical Al2O3p/steel composite[J]. Materials Science and Technology,2019,35(6):716-724. doi: 10.1080/02670836.2019.1590504
    [24]
    JIANG C Y, LU D H, MA W, et al. Mechanical behavior of ZTAp/40Cr three-dimensional interpenetrated composites under compression[J]. Materials Today Communications,2021,28:102623. doi: 10.1016/j.mtcomm.2021.102623
    [25]
    MA W, LU D H, TANG L, et al. Effect of matrix hardness on the impact abrasive wear performance of ZTAp/steel architecture composite[J]. Materials Research Express,2021,8:026507. doi: 10.1088/2053-1591/abe019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (831) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return