Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95. doi: 10.13801/j.cnki.fhclxb.20211223.001
Citation: QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95. doi: 10.13801/j.cnki.fhclxb.20211223.001

Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites

doi: 10.13801/j.cnki.fhclxb.20211223.001
Funds:  National Natural Science Foundation of China (22078100; 52102098); Shanghai Sailing Program (20YF1410600)
  • Received Date: 2021-11-18
  • Accepted Date: 2021-12-11
  • Rev Recd Date: 2021-12-08
  • Available Online: 2021-12-23
  • Publish Date: 2023-01-15
  • To meet the extreme thermal protection requirement of new-generation spacecrafts, nanoporous resin composites (IPC-90) with medium-density, high strength and excellent ablation/insulation properties had been prepared via a sol-gel polymerization using phenolic resin as nanoporous matrix and needled fiber fabric as the reinforcement. The effects of fiber type, namely quartz fiber (QF/IPC-90) and carbon fiber (CF/IPC-90) on the microstructure, mechanical properties, static thermal insulation, and ablation properties of the composites were systematically studied. The as-prepared IPC-90 with medium density of ~0.95 g/cm3 has excellent mechanical properties with tensile strength >120 MPa and bending strength >90 MPa. Due to the introduction of nanopore resin matrix and lightweight fiber felt, the resultant IPC-90 has relatively low room-temperature thermal conductivities (0.089 W/(m∙K) for QF/IPC-90 and 0.120 W/(m∙K) for CF/IPC-90), as well as low effective thermal conductivities at 1000℃. Furthermore, the possible ablation mechanisms under different temperatures were analyzed. It is found that both QF/IPC-90 and CF/IPC-90 have low linear ablation rates under the oxygen-propane ablation test below 2000℃, which are mainly caused by resin matrix pyrolysis and shrinkage. However, under the oxy-acetylene ablation test above 2000℃, the ablation of CF/IPC-90 is dominated by ultrahigh temperature carbonation-sublimation, while the severe ablation of CF/IPC-90 is caused by the melting of quartz fiber. Under the oxy-acetylene ablation of 4.2 MW/m2, the linear ablation rates of CF/IPC-90 and QF/IPC-90 are 0.073 mm/s and 0.186 mm/s, respectively, being similar to the conventional high-density phenolic composites.

     

  • loading
  • [1]
    董彦芝, 刘峰, 杨昌昊, 等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学: 技术科学, 2015, 45(2):151-159.

    DONG Yanzhi, LIU Feng, YANG Changhao, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3rd phase of Chinese lunar exploration program[J]. Scientia Sinica (Technological),2015,45(2):151-159(in Chinese).
    [2]
    冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8):14-24.

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24(in Chinese).
    [3]
    张宗强, 匡松连, 尚龙, 等. 树脂基复合材料长时间烧蚀防热的应用研究[J]. 宇航材料工艺, 2007, 37(6):29-31. doi: 10.3969/j.issn.1007-2330.2007.06.008

    ZHANG Zongqiang, KUANG Songlian, SHANG Long, et al. Resin composites on long time ablation and thermal protection[J]. Aerospace Materials & Technology,2007,37(6):29-31(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.06.008
    [4]
    STACKPOOLE M, VENKATAPATHY E, VIOLETTE S. Sustaining PICA for future NASA robotic science missions in-cluding NF-4 and discovery[C]//2018 IEEE Aerospace Conference. Montana, 2018: 1-7.
    [5]
    贾献峰, 王际童, 龙东辉, 等. PICA-X的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6):46-49.

    JIA Xianfeng, WANG Jitong, LONG Donghui, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology,2016,46(6):46-49(in Chinese).
    [6]
    程海明. 新型超轻质碳/酚醛烧蚀复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    CHENG Haiming. Research on fabrication and properties of novel lightweight carbon/phenolic ablative composite[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [7]
    ELLERBY D, VENKATAPATHY E, GAGE P, et al. Heatshield for extreme entry environment technology (HEEET) thermal protection system (TPS)[C]//Materials Science & Technology Conference and Exhibition. Portland, 2019: 1359-1366.
    [8]
    VENKATAPATHY E, ELLERBY D, GAGE P, et al. Entry system technology readiness for ice-giant probe missions[J]. Space Science Reviews,2020,216(2):1-21.
    [9]
    关春龙, 李壵, 赫晓东. 可重复使用热防护系统防热结构及材料的研究现状[J]. 宇航材料工艺, 2003, 33(6): 7-11, 42.

    GUAN Chunlong, LI Zhuang, HE Xiaodong. Research status of structures and materials for reusable TPS[J]. Aerospace Materials & Technology, 2003, 33(6): 7-11, 42(in Chinese).
    [10]
    MAAHS H G, VAUGHN W L, KOWBEL W. Four advances in carbon-carbon materials technology[C]//The Fourth National Technology Transfer Conference and Exposition. Washington, 2003.
    [11]
    黄竑翔, 王峰, 贺智勇, 等. 飞行器用防热材料的研究进展[J]. 硅酸盐通报, 2021, 40(2):638-644.

    HUANG Hongxiang, WANG Feng, HE Zhiyong, et al. Development of thermal protection materials for aircraft[J]. Bulletin of the Chinese Ceramic Society,2021,40(2):638-644(in Chinese).
    [12]
    HUO C, GUO L, LI Y, et al. Effect of co-deposited SiC nanowires and carbon nanotubes on oxidation resistance for SiC-coated C/C composites[J]. Ceramics International,2017,43(2):1722-1730. doi: 10.1016/j.ceramint.2016.08.196
    [13]
    王玲玲, 肖春, 王坤杰, 等. 不同制备方法下(C/C)/ZrB2-SiC复合材料的抗烧蚀性能[J]. 复合材料学报, 2019, 36(12):2878-2886.

    WANG Lingling, XIAO Chun, WANG Kunjie, et al. Ablation performance of (C/C)/ZrB2-SiC composites by different fabrication methods[J]. Acta Materiae Compositae Sinica,2019,36(12):2878-2886(in Chinese).
    [14]
    中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [15]
    中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [16]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [17]
    中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites—Determination of interlaminar shear strength: GB/T 1450—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [18]
    国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A—1996[S]. 北京: 中国标准出版社, 1996.

    Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323A—1996[S]. Beijing: Standards Press of China, 1996(in Chinese).
    [19]
    孟祥艳, 刘运传, 周燕萍, 等. 微热量热法测定纤维及树脂基复合材料的比热容[J]. 兵工学报, 2015, 36(10):1962-1966. doi: 10.3969/j.issn.1000-1093.2015.10.019

    MENG Xiangyan, LIU Yunchuan, ZHOU Yanping, et al. Determination of specific heat capacity of fiber and resin matrix composites by micro-calorimeter[J]. Acta Armamentarii,2015,36(10):1962-1966(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.10.019
    [20]
    赵建国, 李克智, 李贺军, 等. C/C复合材料比热容和热扩散率的研究[J]. 宇航材料工艺, 2005, 35(6):41-43. doi: 10.3969/j.issn.1007-2330.2005.06.009

    ZHAO Jianguo, LI Kezhi, LI Hejun, et al. Research on thermal diffusivity and specific heat capacity of C/C composites[J]. Aerospace Materials & Technology,2005,35(6):41-43(in Chinese). doi: 10.3969/j.issn.1007-2330.2005.06.009
    [21]
    蒋凌澜, 陈阳. 树脂基复合材料在航天飞行器气动热防护上的应用研究[J]. 玻璃钢/复合材料, 2014(7):78-84.

    JIANG Linglan, CHEN Yang. The application research of resin-based composites for aero-dynamic thermal protection system[J]. Composites Science and Engineering,2014(7):78-84(in Chinese).
    [22]
    阳波. 阻燃增强酚醛玻璃钢[J]. 热固性树脂, 1991(4):25-30.

    YANG Bo. Flame retardant glass resin-forced phenolic resins[J]. Thermosetting Resin,1991(4):25-30(in Chinese).
    [23]
    张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8): 3663-3673.

    ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanism of low-density needled fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3663-3673(in Chinese).
    [24]
    MA C, MA Z, GAO L, et al. Ablation behavior of boron-modified phenolic resin irradiated by high-energy continuous-wave laser and its evolution of carbon structure[J]. Materials & Design,2019,180:107954.
    [25]
    JIA P, LIU H, LIU Q, et al. Thermal degradation mechanism and flame retardancy of MQ silicone/epoxy resin composites[J]. Polymer Degradation and Stability,2016,134:144-150. doi: 10.1016/j.polymdegradstab.2016.09.029
    [26]
    HELBER B, TURCHI A, SCOGGINS J B, et al. Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas[J]. International Journal of Heat and Mass Transfer,2016,100:810-824. doi: 10.1016/j.ijheatmasstransfer.2016.04.072
    [27]
    LACHAUD J, SCOGGINS J B, MAGIN T E, et al. A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures[J]. International Journal of Heat and Mass Transfer,2017,108:1406-1417. doi: 10.1016/j.ijheatmasstransfer.2016.11.067
    [28]
    时圣波, 梁军, 刘志刚, 等. 高硅氧/酚醛复合材料烧蚀环境下的吸热机理[J]. 固体火箭技术, 2013, 36(1):113-118.

    SHI Shengbo, LIANG Jun, LIU Zhigang, et al. Endothermic mechanism of silica/phenolic composite under ablative environment[J]. Journal of Solid Rocket Technology,2013,36(1):113-118(in Chinese).
    [29]
    ZHAO Z, LI K, LI W, et al. Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites[J]. Ceramics International,2018,44(7):7481-7490. doi: 10.1016/j.ceramint.2018.01.125
    [30]
    WANG P, LI H, YUAN R, et al. A CrSi2-HfB2-SiC coating providing oxidation and ablation protection over 1973 K for SiC coated C/C composites[J]. Corrosion Science,2020,167:108536. doi: 10.1016/j.corsci.2020.108536
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1167) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return