Citation: | SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325-4336. DOI: 10.13801/j.cnki.fhclxb.20210223.002 |
[1] |
CAVERZAN A, CADONI E, PRISCO M D. Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure[J]. Mechanics of Materials, 2013, 59: 87-109.
|
[2] |
TOUTANJI H A, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials,2012,29:444-448. DOI: 10.1016/j.conbuildmat.2011.10.041
|
[3] |
LI V C, LEUNG C. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
|
[4] |
徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6):45-60. DOI: 10.3321/j.issn:1000-131X.2008.06.008
XU Shilang, LI Hedong. Research progress and engineering application of ultra-high toughness cement-based composites[J]. China Civil Engineering Journal,2008(6):45-60(in Chinese). DOI: 10.3321/j.issn:1000-131X.2008.06.008
|
[5] |
吴泽媚. 超高性能混凝土中纤维与基体界面粘结性能多尺度研究[D]. 长沙: 湖南大学, 2017.
WU Zemei. Multi-scale study on the bonding properties of fiber and matrix interface in ultra-high performance concrete[D]. Changsha: Hunan University, 2017(in Chinese).
|
[6] |
宁逢伟, 陈波,张丰. PVA纤维掺量对水工混凝土抗裂性能的影响[J]. 水利水电技术, 2017, 48(2): 125-129.
NING Fengwei, CHEN Bo, ZHANG Feng. Effect of PVA fiber content on crack resistance of hydraulic concrete[J]. Water Conservancy and Hydropower Technology, 2017, 48 (2): 125-129(in Chinese).
|
[7] |
LIU W, HAN J. Experimental investigation on compressive toughness of the PVA-steel hybrid fiber reinforced cementitious composites[J]. Frontiers in Materials, 2019, 6: 108
|
[8] |
牛龙龙, 张士萍, 韦有信. 钢纤维掺量对混凝土力学性能的影响[J]. 混凝土与水泥制品, 2019(3):51-54.
NIU Longlong, ZHANG Shiping, WEI Youxin. The effect of steel fiber content on the mechanical properties of concrete[J]. China Concrete and Cement Products,2019(3):51-54(in Chinese).
|
[9] |
张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. DOI: 10.3321/j.issn:1000-131X.2009.10.008
ZHANG Xiufang, XU Shilang, HOU Lijun. Research on using ultra-high toughness cement-based composites to improve the flexural crack resistance of reinforced concrete beams (II): Experimental research[J]. China Civil Engineering Journal,2009,42(10):53-66(in Chinese). DOI: 10.3321/j.issn:1000-131X.2009.10.008
|
[10] |
KIM J W, LEE J J, LEE D G. Effect of fiber orientation on the tensile strength in fiber-reinforced polymeric composite materials[J]. Key Engineering Materials,2005,297-300:2897-2902. DOI: 10.4028/www.scientific.net/KEM.297-300.2897
|
[11] |
罗才松. 聚丙烯纤维掺量对混凝土强度的影响[J]. 科学技术与工程, 2011, 11(4):874-876. DOI: 10.3969/j.issn.1671-1815.2011.04.045
LUO Caisong. The influence of polypropylene fiber content on concrete strength[J]. Science Technology and Engineering,2011,11(4):874-876(in Chinese). DOI: 10.3969/j.issn.1671-1815.2011.04.045
|
[12] |
KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47:760-770.
|
[13] |
SHEN D, JIANG J, SHEN J, et al. Influence of curing tem-perature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age[J]. Construction & Building Materials,2016,103:67-76.
|
[14] |
DEROSA D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Materials & Structures,2015,48(4):1109-1123.
|
[15] |
王庆, 王艳云, 邢海峰. 聚丙烯纤维混凝土在低温条件下力学性能的研究[J]. 石河子大学学报(自然科学版), 2007(2):229-231.
WANG Qing, WANG Yanyun, XING Haifeng. Research on the mechanical properties of polypropylene fiber concrete under low temperature conditions[J]. Journal of Shihezi University (Natural Science),2007(2):229-231(in Chinese).
|
[16] |
LIU X, ZHANG M H, CHIA K S, et al. Mechanical properties of ultra-lightweight cement composite at low tempera-tures of 0 to 60°C[J]. Cement & Concrete Composites,2016,73:289-298.
|
[17] |
DAHMANI L, KHENANE A, KACI S. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9-10):517-525. DOI: 10.1016/j.cryogenics.2007.07.001
|
[18] |
XIE J, LI X, WU H. Experimental study on the axial-compression performance of concrete at cryogenic tempera-tures[J]. Construction & Building Materials,2014,72(dec. 15):380-388.
|
[19] |
CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,261-263:389-393. DOI: 10.4028/www.scientific.net/AMR.261-263.389
|
[20] |
中国工程建设协会标准. 纤维混凝土试验方法标准: CECS13: 2009[S]. 北京: 中国计划出版社, 2010.
China Association for Engineering Construction Standardization. Test method standard for fiber reinforced concrete: CECS13: 2009[S]. Beijing: China Planning Press, 2010(in Chinese).
|
[21] |
YAMANA S, KASAMI H, OKUNO T. Properties of concrete at very low temperatures[J]. Publication SP 55,1978,55:1-12.
|
[22] |
MIURA T. The properties of concrete at very low tempera-tures[J]. Materials and Structures,1989,22(4):243-254. DOI: 10.1007/BF02472556
|