SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325-4336. DOI: 10.13801/j.cnki.fhclxb.20210223.002
Citation: SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325-4336. DOI: 10.13801/j.cnki.fhclxb.20210223.002

Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites

More Information
  • Received Date: December 17, 2020
  • Accepted Date: February 01, 2021
  • Available Online: February 22, 2021
  • Ultra high toughness cementitious composites (UHTCC) is a new material with ultra-high toughness and good durability. Its compressive toughness index is an important index to evaluate the toughness of UHTCC. 5 groups of UHTCC with different fiber contents were tested under uniaxial compression after ultra-low temperature, and the evaluation index of compressive toughness of UHTCC under ultra-low temperature was studied, and its deformation capacity was equivalent analyzed. The experimental results show that within a certain range, with the increase of fiber content, the compressive strength and toughness of UHTCC are significantly improved, but beyond the optimal content range, the performances are not improved, but are slightly decreased; ultra-low temperature has a certain improvement on the compressive strength of UHTCC, when the temperature is reduced to −196℃, the axial compressive strength can be increased by 74.42%, but it shows obvious fragility.
  • [1]
    CAVERZAN A, CADONI E, PRISCO M D. Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure[J]. Mechanics of Materials, 2013, 59: 87-109.
    [2]
    TOUTANJI H A, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials,2012,29:444-448. DOI: 10.1016/j.conbuildmat.2011.10.041
    [3]
    LI V C, LEUNG C. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
    [4]
    徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6):45-60. DOI: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shilang, LI Hedong. Research progress and engineering application of ultra-high toughness cement-based composites[J]. China Civil Engineering Journal,2008(6):45-60(in Chinese). DOI: 10.3321/j.issn:1000-131X.2008.06.008
    [5]
    吴泽媚. 超高性能混凝土中纤维与基体界面粘结性能多尺度研究[D]. 长沙: 湖南大学, 2017.

    WU Zemei. Multi-scale study on the bonding properties of fiber and matrix interface in ultra-high performance concrete[D]. Changsha: Hunan University, 2017(in Chinese).
    [6]
    宁逢伟, 陈波,张丰. PVA纤维掺量对水工混凝土抗裂性能的影响[J]. 水利水电技术, 2017, 48(2): 125-129.

    NING Fengwei, CHEN Bo, ZHANG Feng. Effect of PVA fiber content on crack resistance of hydraulic concrete[J]. Water Conservancy and Hydropower Technology, 2017, 48 (2): 125-129(in Chinese).
    [7]
    LIU W, HAN J. Experimental investigation on compressive toughness of the PVA-steel hybrid fiber reinforced cementitious composites[J]. Frontiers in Materials, 2019, 6: 108
    [8]
    牛龙龙, 张士萍, 韦有信. 钢纤维掺量对混凝土力学性能的影响[J]. 混凝土与水泥制品, 2019(3):51-54.

    NIU Longlong, ZHANG Shiping, WEI Youxin. The effect of steel fiber content on the mechanical properties of concrete[J]. China Concrete and Cement Products,2019(3):51-54(in Chinese).
    [9]
    张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. DOI: 10.3321/j.issn:1000-131X.2009.10.008

    ZHANG Xiufang, XU Shilang, HOU Lijun. Research on using ultra-high toughness cement-based composites to improve the flexural crack resistance of reinforced concrete beams (II): Experimental research[J]. China Civil Engineering Journal,2009,42(10):53-66(in Chinese). DOI: 10.3321/j.issn:1000-131X.2009.10.008
    [10]
    KIM J W, LEE J J, LEE D G. Effect of fiber orientation on the tensile strength in fiber-reinforced polymeric composite materials[J]. Key Engineering Materials,2005,297-300:2897-2902. DOI: 10.4028/www.scientific.net/KEM.297-300.2897
    [11]
    罗才松. 聚丙烯纤维掺量对混凝土强度的影响[J]. 科学技术与工程, 2011, 11(4):874-876. DOI: 10.3969/j.issn.1671-1815.2011.04.045

    LUO Caisong. The influence of polypropylene fiber content on concrete strength[J]. Science Technology and Engineering,2011,11(4):874-876(in Chinese). DOI: 10.3969/j.issn.1671-1815.2011.04.045
    [12]
    KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47:760-770.
    [13]
    SHEN D, JIANG J, SHEN J, et al. Influence of curing tem-perature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age[J]. Construction & Building Materials,2016,103:67-76.
    [14]
    DEROSA D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Materials & Structures,2015,48(4):1109-1123.
    [15]
    王庆, 王艳云, 邢海峰. 聚丙烯纤维混凝土在低温条件下力学性能的研究[J]. 石河子大学学报(自然科学版), 2007(2):229-231.

    WANG Qing, WANG Yanyun, XING Haifeng. Research on the mechanical properties of polypropylene fiber concrete under low temperature conditions[J]. Journal of Shihezi University (Natural Science),2007(2):229-231(in Chinese).
    [16]
    LIU X, ZHANG M H, CHIA K S, et al. Mechanical properties of ultra-lightweight cement composite at low tempera-tures of 0 to 60°C[J]. Cement & Concrete Composites,2016,73:289-298.
    [17]
    DAHMANI L, KHENANE A, KACI S. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9-10):517-525. DOI: 10.1016/j.cryogenics.2007.07.001
    [18]
    XIE J, LI X, WU H. Experimental study on the axial-compression performance of concrete at cryogenic tempera-tures[J]. Construction & Building Materials,2014,72(dec. 15):380-388.
    [19]
    CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,261-263:389-393. DOI: 10.4028/www.scientific.net/AMR.261-263.389
    [20]
    中国工程建设协会标准. 纤维混凝土试验方法标准: CECS13: 2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Test method standard for fiber reinforced concrete: CECS13: 2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [21]
    YAMANA S, KASAMI H, OKUNO T. Properties of concrete at very low temperatures[J]. Publication SP 55,1978,55:1-12.
    [22]
    MIURA T. The properties of concrete at very low tempera-tures[J]. Materials and Structures,1989,22(4):243-254. DOI: 10.1007/BF02472556
  • Related Articles

    [1]SUN Bin, LUO Rui, ZHONG Mingyu, SONG Chaolin, XIAO Rucheng. Shear performance and steel fiber reinforcement mechanism of prestressed ultra-high performance concrete rectangular beams[J]. Acta Materiae Compositae Sinica.
    [2]CHEN Yuliang, LIU Zhihua, YE Peihuan, CHEN Zongping. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4128-4138. DOI: 10.13801/j.cnki.fhclxb.20221024.002
    [3]CHEN Yuliang, LI Tang, JIANG Rui, XU Hongfei. Composite shear mechanical properties of carbon fiber recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4107-4116. DOI: 10.13801/j.cnki.fhclxb.20221011.001
    [4]ZHAO Qiuhong, DONG Shuo, ZHU Han. Experimental study on shear behavior of steel fiber-rubber/concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3201-3213. DOI: 10.13801/j.cnki.fhclxb.20200507.005
    [5]DENG Mingke, LIU Huazheng, MA Fudong, DENG Can. Double shear experiment of highly ductile concrete modified by polyvingl alcohol and shear toughness evaluation method[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 461-471. DOI: 10.13801/j.cnki.fhclxb.20190528.002
    [6]WANG Yuqing, LIU Xiao, GAO Yuanming, LIU Shuguang. Experimental study on shear toughness of polyvinyl alcohol fiber reinforced engineered cementitious composite beams with different fiber contents[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1968-1976. DOI: 10.13801/j.cnki.fhclxb.20181108.006
    [7]ZHOU Xingchi, TANG Zhen'gang, ZHOU Xubin, DU Dong, KONG Xianghong, LIU Xingtian. External shear modulus of CFRP circular cell honeycomb[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2777-2785. DOI: 10.13801/j.cnki.fhclxb.20180202.001
    [8]Analysis and improvement of the sandwich shear test method[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 115-120.
    [9]LIU Wei, JIAO Guiqiong, GUAN Guoyang, CHANG Yanjun. Investigation on tensile and interlaminar shear of plain woven CMC with Z-pin reinforcement[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 86-90.
    [10]Wang Hong-gang, Zheng An-na, Dai Gan-ce. STUDY ON THE INTERFACIAL BONDING OF GLASS FIBER REINFORCED POLYPROPYLENE COMPOSITES1. INTERFACIAL SHEAR STRENGTH[J]. Acta Materiae Compositae Sinica, 1999, 16(3): 46-50.

Catalog

    Article Metrics

    Article views (1066) PDF downloads (62) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return