Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
DONG Wei, QIAN Fuping, LI Qing, et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003
Citation: DONG Wei, QIAN Fuping, LI Qing, et al. Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3017-3025. doi: 10.13801/j.cnki.fhclxb.20200421.003

Preparation and properties of polyethylene terephthalate filter material with superhydrophobic surface

doi: 10.13801/j.cnki.fhclxb.20200421.003
  • Received Date: 2020-03-02
  • Accepted Date: 2020-04-13
  • Available Online: 2020-04-22
  • Publish Date: 2020-12-15
  • Superhydrophobic polyethylene terephthalate (PET) filter was prepared by sol-gel method with PET filter as matrix material, tetraethyl orthosilicate (TEOS) and methyl triethoxysilane (MTES) as modifiers. Field emission scanning electron microscopy (FESEM-EDS), Fourier transform infrared spectrometer (FTIR) and contact angle measurement were introduced to investigate the micro morphology, surface composition and contact angle of PET filter material before and after modification. The results show that the porosity of the filter material is slightly changed after modification. TEOS-modified PET (T-PET) filter material shows superhydrophilic due to the formation of a large numbers of hydrophilic —OH groups. On the contrary, hydrophobic —CH3 groups are existed on the surface of MTES modified PET (M-PET) filter material, which endows high hydrophobicity. Moreover, TEOS and MTES modified PET (MT-PET) filter material displays superhydrophobicity due to lots of SiO2 nanoparticles covered by —CH3 groups are deposited on the fiber surface, reducing the surface energy of the filter material and forming micro-nano, wrinkled and even convex structure. MT-PET presents static contact angle (WCA) of (158.8±1.2)° with water shedding angle (WSA) of (6.9±1.5)°, indicating superhydrophobic state of MT-PET filter material. In addition, through the contrast test of spraying wet dust and soaking filter material in water (room temperature), it shows that MT-PET filter material has good self-cleaning performance and stability. In conclusion, the preparation of superhydrophobic MT-PET filter material in this paper has potential value for the research and development of bag filter material in high humidity environment.

     

  • loading
  • [1]
    ZHAO Q, YAO W, ZHANG C, et al. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect[J]. Renewable Energy,2019,134:178-185. doi: 10.1016/j.renene.2018.11.027
    [2]
    LI H, WANG Q, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution,2016,208:655-662. doi: 10.1016/j.envpol.2015.10.042
    [3]
    LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM 2.5 capture[J]. Nature Communications,2015,6(1):1-9.
    [4]
    GU Y L, CHEN C Z, GU X J. Research on high temperature fume control technology of bag house dusting[J]. Heavy Machinery,2015(2):17-21.
    [5]
    郭颖赫, 赫伟东, 柳静献. 聚对苯二甲酸乙二醇酯纳米纤维膜/涤纶针刺毡过滤复合材料的制备及性能[J]. 复合材料学报, 2019, 36(3):572-577.

    GUO Y H, HE W D, LIU J X. Preparation and characterization of polyethylene terephthalate nanofiber membrane/polyester needle felt composite filters[J]. Acta Materiae Compositae Sinica,2019,36(3):572-577(in Chinese).
    [6]
    KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J]. Composites Part B: Engineering,2015,79:621-630. doi: 10.1016/j.compositesb.2015.05.020
    [7]
    KHOMWACHIRAKUL P, DEVAHASTIN S, SWASDISEVI T, et al. Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM[J]. Drying Technology,2016,34(4):403-419. doi: 10.1080/07373937.2015.1081930
    [8]
    SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature,2015,527(7576):82-85. doi: 10.1038/nature15738
    [9]
    ZHANG S, HUANG J, TANG Y, et al. Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures[J]. Small,2017,13(4):1600687. doi: 10.1002/smll.201600687
    [10]
    BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [11]
    GAO X, JIANG L. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36. doi: 10.1038/432036a
    [12]
    CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature,2016,532(7597):85-89. doi: 10.1038/nature17189
    [13]
    LAI D L, KONG G, LI X C, et al. Corrosion resistance of ZnO nanorod superhydrophobic coatings with rose petal effect or lotus leaf effect[J]. Journal of Nanoscience and Nanotechnology,2019,19(7):3919-3928. doi: 10.1166/jnn.2019.16313
    [14]
    MUKHOPADHYAY R D, VEDHANARAYANAN B, AJAYAGHOSH A. Creation of “Rose Petal” and “Lotus Leaf” effects on alumina by surface functionalization and metal-ion coordination[J]. Angewandte Chemie,2017,129(50):16234-16238. doi: 10.1002/ange.201709463
    [15]
    LI Y, ZOU C, SHAO J, et al. Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro–nano structure via centrifugal spinning[J]. RSC Advances,2017,7(18):11041-11048. doi: 10.1039/C6RA25813A
    [16]
    XU Q, ZHAO Q, ZHU X, et al. A new kind of transparent and self-cleaning film for solar cells[J]. Nanoscale,2016,8(41):17747-17751. doi: 10.1039/C6NR03537J
    [17]
    CUI W, WANG T, YAN A, et al. Superamphiphobic surfaces constructed by cross-linked hollow SiO2 spheres[J]. Applied Surface Science,2017,400:162-171. doi: 10.1016/j.apsusc.2016.12.098
    [18]
    ZHUANG A, LIAO R, LU Y, et al. Transforming a simple commercial glue into highly robust superhydrophobic surfaces via aerosol-assisted chemical vapor deposition[J]. ACS Applied Materials & Interfaces,2017,9(48):42327-42335.
    [19]
    SUN H, XU Y, ZHOU Y, et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles[J]. Journal of Applied Polymer Science,2016,134(13):44501.
    [20]
    王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG D, XUAN L H, LI C, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(4):964-972(in Chinese).
    [21]
    KHARRAZ J A, AN A K. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance[J]. Journal of Membrane Science,2020,595:117596. doi: 10.1016/j.memsci.2019.117596
    [22]
    LIU M, QING Y, WU Y, et al. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process[J]. Applied Surface Science,2015,330:332-338. doi: 10.1016/j.apsusc.2015.01.024
    [23]
    王兴原, 费美丽, 陈纪忠. 原位红外光谱研究聚对苯二甲酸乙二醇酯(PET)醇解反应过程[J]. 高校化学工程学报, 2013, 27(1):58-64.

    WANG X Y, FEI M L, CHEN J Z. Study of process of polyethylene terephthalate(PET) methanolysis by FT-IR in situ[J]. Journal of Chemical Engineering of Chinese Universities,2013,27(1):58-64(in Chinese).
    [24]
    江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001(2):62-68. doi: 10.3969/j.issn.1003-3726.2001.02.010

    JIANG Y, WU L H. Applications of infrared spectroscopy in the structural study of poly (Ethylene Terephthalate) fibers[J]. Polymer Bulletin,2001(2):62-68(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.02.010
    [25]
    陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4):934-937.

    CHEN H S, SUN Z Y, SHAO J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society,2011,30(4):934-937(in Chinese).
    [26]
    杨靖, 陈杰. 甲基修饰二氧化硅气凝胶的红外光谱和热分析研究[J]. 西安交通大学学报, 2009, 43(1):114-118. doi: 10.3321/j.issn:0253-987X.2009.01.025

    YANG J, CHEN J. Fourier transform infrared spectroscopy and thermal analysis of silica aerogel modified by methyl groups[J]. Journal of Xi'an Jiaotong University,2009,43(1):114-118(in Chinese). doi: 10.3321/j.issn:0253-987X.2009.01.025
    [27]
    ZIMMERMANN J, REIFLER F A, FORTUNATO G, et al. A simple, one-step approach to durable and robust superhydropHobic textiles[J]. Advanced Functional Materials,2008,18(22):3662-3669. doi: 10.1002/adfm.200800755
    [28]
    CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [29]
    MIN K S, MANIVANNAN R, SON Y A. Porphyrin dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material[J]. Dyes and Pigments,2019,162:8-17. doi: 10.1016/j.dyepig.2018.10.014
    [30]
    XU Z, MIYAZAKI K, HORI T. Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning[J]. Applied Surface Science,2016,370:243-251. doi: 10.1016/j.apsusc.2016.02.135
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1180) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return