Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
WANG Juan, ZHANG Faming, SHANG Caiyun, et al. Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001
Citation: WANG Juan, ZHANG Faming, SHANG Caiyun, et al. Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001

Tailoring of interface reaction, microstructure and compressive properties of graphene reinforced titanium alloy matrix composites

doi: 10.13801/j.cnki.fhclxb.20200421.001
  • Received Date: 2020-01-17
  • Accepted Date: 2020-04-10
  • Available Online: 2020-04-21
  • Publish Date: 2020-12-15
  • Few-layered graphene reinforced titanium matrix composites (GR/TC4) with 3D network structures were fabricated through a 3D mixing machine and spark plasma sintering (SPS) technique. The effects of different sintering temperatures, holding time, heating rate and uniaxial pressure in the SPS on the in-situ interface reaction of GR with titanium matrix were studied. The phases, microstructure and compressive properties at room temperature of the network structured composites with different GR/TiC ratios were investigated systematically. Experimental results exhibite that the SPS temperature and heating rate are the key factors for determination of reaction ratio of the GR with matrix and the uniaxial pressure affects relative density of the composites. Low temperature, high pressure and fast sintering can inhibit the reaction between the GR and matrix. However, the composites with more residual GR do not show excellent mechanical properties. It is indicated that excellent compressive strength and ductility integrated mechanical properties are achieved with GR reaction ratio of 70%-80% in the 0.25wt% GR/TC4 composites, where the interface bonding is to an optimal state. The 3D network distribution of GR in the titanium alloy matrix can tailor the conflict between strength and ductility of the titanium matrix nanocomposites.

     

  • loading
  • [1]
    汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展[J]. 粉末冶金技术, 2004, 22(5):293-296. doi: 10.3321/j.issn:1001-3784.2004.05.008

    TANG Huiping, HUANG Baiyun, LIU Yong, et al. Progress in powder metallurgy particle reinforced Ti matrix composite[J]. Powder Metallurgy Technology,2004,22(5):293-296(in Chinese). doi: 10.3321/j.issn:1001-3784.2004.05.008
    [2]
    TJONG S C, MAI Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology,2008,68(3):583-601.
    [3]
    黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(4):126-138. doi: 10.11868/j.issn.1005-5053.2014.4.013

    HUANG Lujun, GENG Lin. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):126-138(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.013
    [4]
    GENG L, HUANG L J. High temperature properties of discontinuously reinforced titanium matrix composites: A review[J]. Acta Metallurgica Sinica,2014,27(5):787-797.
    [5]
    GOREES S, PETITCORPS Y L, MATAR S, et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite[J]. Materials Science & Engineering A,2008,340(1):80-87.
    [6]
    MIN Y K, JAE S P, MIN K P, et al. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites[J]. Scripta Materialia,2012,66(7):487-490.
    [7]
    NID R, GENGL, ZHANG J, et al. Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti-B4C-C[J]. Materials Science and Engineering: A,2008,478(1):291-296.
    [8]
    吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146. doi: 10.11868/j.issn.1005-5053.2014.4.014

    LV Weijie, GUO Xianglong, WANG Liqiang, et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):139-146(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.014
    [9]
    HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal[J]. Progress in Materials Science,2015,71:93-168. doi: 10.1016/j.pmatsci.2015.01.002
    [10]
    HUANGL J, GENGL, LIA B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scripta Materialia,2009,60(11):996-999.
    [11]
    HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics/Physics of Solids,1962,10(4):343-352. doi: 10.1016/0022-5096(62)90005-4
    [12]
    TJONG S C, RRPORTS E R. Recent progress in the development and properties of novel metal matrix nanocompo-sites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [13]
    LEE CG, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [14]
    STEURER P, WISSERT R, THOMANN R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications,2010,30(4-5):316-327.
    [15]
    ZHU Y W, MURALIS, CAI W W, et al. Graphene-based materials: Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3823-3853.
    [16]
    郭强, 赵蕾, 李赞, 等. 金属材料的石墨烯强韧化[J]. 中国材料进展. 2019, 38(3): 205-213.

    GUO Qiang, ZHAO Lei, LI Zan, et al. Strengthening and toughening of graphene-reinforced metal matrix composites[J].Materials China, 2019, 38(3): 205-213(in Chinese).
    [17]
    DONG L L, XIAO B, JINA L H, et al. Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J]. Ceramics International,2019,45(15):19370-19379. doi: 10.1016/j.ceramint.2019.06.189
    [18]
    GURBUZ M, MUTUK T. Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites[J]. Journal of Composite Materials,2018,52(4):543-551. doi: 10.1177/0021998317745143
    [19]
    SNOG Y, CHEN Y, LIU WW, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers[J]. Materials/Design,2016,109:256-263.
    [20]
    CAO H C, LIANG Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,2020,812:152057. doi: 10.1016/j.jallcom.2019.152057
    [21]
    CAO Z, WANG X, LI J, et al. Reinforcement with graphene nanoflakes in titanium matrix composites[J]. Journal of Alloys/Compounds,2017,696:498-502.
    [22]
    MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science& Engineering A,2018,725:541-548.
    [23]
    MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low concentration graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science & Engineering A,2017,687:164-174.
    [24]
    HU Z, CHEN F, XU J, et al. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties[J]. Composites Part B: Engineering,2018,134:133-140. doi: 10.1016/j.compositesb.2017.09.069
    [25]
    MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Carbon,2018,137:146-155. doi: 10.1016/j.carbon.2018.05.013
    [26]
    SUN C, ZHANG X, ZHAO N Q, et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene like network reinforced Cu matrix composites[J]. Materials Science & Engineering A,2019(756):82-91.
    [27]
    ZHANG X, SHI C S, LIU E Z, et al. High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation[J]. Materials Science & Engineering A,2019(762):138063.
    [28]
    XU T L, ZHOU S S, CUI S Q, et al. Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites[J]. Composites Part B: Engineering,2019(178):107495.
    [29]
    邹君玉. 石墨烯/纯铝复合材料的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZOU Junyu. The preparation and properties of graphene reinforced pure aluminum composites[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1203) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return