Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Jintong, ZHOU Gang, CHEN Guiting, et al. Effect of folded contact between electrode and dielectric layer on the performance of piezoelectric flexible electronic skin[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3194-3200. doi: 10.13801/j.cnki.fhclxb.20200416.002
Citation: ZHANG Jintong, ZHOU Gang, CHEN Guiting, et al. Effect of folded contact between electrode and dielectric layer on the performance of piezoelectric flexible electronic skin[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3194-3200. doi: 10.13801/j.cnki.fhclxb.20200416.002

Effect of folded contact between electrode and dielectric layer on the performance of piezoelectric flexible electronic skin

doi: 10.13801/j.cnki.fhclxb.20200416.002
  • Received Date: 2020-02-10
  • Accepted Date: 2020-04-16
  • Available Online: 2020-04-17
  • Publish Date: 2020-12-15
  • A simple method for fabricating flexible electronic skin based on piezoelectric effect was presented. In order to study the effect of nano modification on the performance of flexible electronic skin, SiO2/polydimethylsiloxane (PDMS) composite flexible substrate was prepared by using nano-SiO2 particles as modifiers and PDMS as matrix. The flexible and stable electrodes were prepared and the crack problem of electrode material on flexible PDMS substrate by magnetron sputtering was successfully solved. The functional layer of barium titanium trioxide/carbon nanotubes/PDMS (BaTiO3/CNTs/PDMS) was implanted in the five-layer structure of the flexible electronic skin that was designed based on the piezoelectric effect. A simple method by varying the substrate roughness was proposed to make a folded contact between the electrode and the dielectric layer. This method improves the conductivity and piezoelectric response of the prepared flexible electronic skin.

     

  • loading
  • [1]
    XUE Xinyu, QU Zhi, FU Yongming, et al. Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process[J]. Nano Energy,2016,26:148-156. doi: 10.1016/j.nanoen.2016.05.021
    [2]
    CAI Shuyi, CHANG Chenghan, LIN Hungi, et al. Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: Toward an additional perception of artificial intelligence[J]. ACS Applied Materials & Interfaces,2018,10:17393-17400.
    [3]
    WANG Xiandi, DONG Lin, ZHANG Hanlu, et al. Recent progress in electronic skin[J]. Advanced Science,2015,2(10):1500169. doi: 10.1002/advs.201500169
    [4]
    LOPES P F A, HUGO P, ANIBAL T D, et al. Hydroprinted electronics: ultrathin stretchable Ag-In-Ga e-Skin for bioelectronics & human-machine interaction[J]. ACS Applied Materials & Interfaces,2018,10:38760-38768. doi: 10.1021/acsami.8b13257
    [5]
    ZHU Hongfei, WANG Xuewen, LIANG Jia, et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites[J]. Advanced Functional Materials,2017,27(21):1606604. doi: 10.1002/adfm.201606604
    [6]
    HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials,2016,29(13):1603483.
    [7]
    HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials,2013,25(42):5997-6038. doi: 10.1002/adma.201302240
    [8]
    LEE M Y, Lee H R, PARK C H, et al. Organic transistor-based chemical sensors for wearable bioelectronics[J]. Accounts of Chemical Research,2018,51(11):2829-2838. doi: 10.1021/acs.accounts.8b00465
    [9]
    LIU Bingcheng, WANG Ying, MIAO Yong, et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater selfadhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials,2018,171:83-96. doi: 10.1016/j.biomaterials.2018.04.023
    [10]
    KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature,2013,499(7459):458-463. doi: 10.1038/nature12314
    [11]
    YAO Shanshan, SWETHA P, ZHU yong. Nanomaterial-enabled wearable sensors for healthcare[J]. Advanced Healthcare Materials,2017,7(1):1700889.
    [12]
    HILL M, HOENA B, KILIAN W, et al. Wearable, modular and intelligent sensor laboratory[J]. Procedia Engineering,2016,147:671-676. doi: 10.1016/j.proeng.2016.06.270
    [13]
    BARIYA M, NYEIN H Y Y, JAVE A. Wearable sweat sensors[J]. Nature Electronics,2018,1:160-171. doi: 10.1038/s41928-018-0043-y
    [14]
    KIM J, ALAN S C, WANG J. Wearable non-invasive epidermal glucose sensors: A review[J]. Talanta,2018,177:163-170. doi: 10.1016/j.talanta.2017.08.077
    [15]
    SOMEYA T, SEKITANI T, IBA S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9966-9970. doi: 10.1073/pnas.0401918101
    [16]
    ZHANG Liang, LIU Xianchun, WANG Yuanhong, et al. Controllable silver embedding into polypyrrole[J]. Journal of Alloys and Compounds,2017,709:431-437. doi: 10.1016/j.jallcom.2017.03.172
    [17]
    PARK J, KIM J, HONG J, et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins[J]. NPG Asia Materials,2018,10:163-176. doi: 10.1038/s41427-018-0031-8
    [18]
    LOU Zheng, CHEN Shuai, WANG Lili. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics[J]. Nano Energy,2017,38:28-35. doi: 10.1016/j.nanoen.2017.05.024
    [19]
    CHAN H, NA, YUN K S. Capacitive force sensor with wide dynamic range using wrinkled micro structures as dielectric layer[J]. Journal of Nanoscience & Nanotechnology,2019,19:6662-6667.
    [20]
    ZENG Xiangwen, WANG Zhixuan, ZHANG Heng, et al. Tunable, ultrasensitive, and flexible pressure sensors based on wrinkled microstructures for electronic skins[J]. ACS Applied Materials & Interfaces,2019,11(23):21218-21226.
    [21]
    PARK K I, XU S, LIU Y, et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates[J]. Nano Letters,2010,10(12):4939-4943. doi: 10.1021/nl102959k
    [22]
    PARK K, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials,2001,24:3599-3564.
    [23]
    VIVEKANANTHAN V, CHANDRASEKHAR A, RAO ALLURI N, et al. A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles[J]. Materials Letters,2019,249:73-76. doi: 10.1016/j.matlet.2019.02.134
    [24]
    CAO Maosheng, WANG Xixi, ZHANG min, et al. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Advanced Materials,2020,32(10):2-8.
    [25]
    AI Y F, LOUA Z, CHENET S, et al. All rGO-on-PVDF-nanofibers based self-powered electronic skins[J]. Nano Energy,2017,35:121-127. doi: 10.1016/j.nanoen.2017.03.039
    [26]
    JANG K I, JUNG H N, LEE J W, et al. Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording[J]. Advanced Functional Materials,2016,26(40):7281-7290. doi: 10.1002/adfm.201603146
    [27]
    WU K, YUAN H Z, LI S J, et al. Two-stage wrinkling of Al films deposited on polymer substrates[J]. Scripta Materialia,2019,162:456-459. doi: 10.1016/j.scriptamat.2018.12.016
    [28]
    RYSPAYEVA A, JONES T D A, ESFAHANI M N, et al. A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications[J]. Microelectronic Engineering,2019,209:35-40. doi: 10.1016/j.mee.2019.03.001
    [29]
    CHICHE A, Stafford C M, Cabral J T, et al. Complex micropatterning of periodic structures on elastomeric surfaces[J]. Soft Matter,2008,4(12):2360-2364. doi: 10.1039/b811817e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (959) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return