DONG Ping, SUN Wenlei, FAN Jun, et al. Response of surface displacement and interlayer fracture toughness of GFRP composite blades shimmy[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3088-3096. DOI: 10.13801/j.cnki.fhclxb.20180716.002
Citation: DONG Ping, SUN Wenlei, FAN Jun, et al. Response of surface displacement and interlayer fracture toughness of GFRP composite blades shimmy[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3088-3096. DOI: 10.13801/j.cnki.fhclxb.20180716.002

Response of surface displacement and interlayer fracture toughness of GFRP composite blades shimmy

More Information
  • Corresponding author:

    孙文磊,博士,教授,博士生导师,研究方向为CAD、CAE、CAM工程及应用技术,E-mail:sunwenxj@163.com

  • Received Date: March 28, 2018
  • Revised Date: June 27, 2018
  • It is one of the main causes of GFRP composite windturbine blades failure that the blade shimmy leads to the formation and growth of interlayer sliding cracks.The stress intensity factor K is an important parameter for the interlayer fracture toughness.It is also one of the important indicators for the safety assessment of surface cracks.On the basis of experiments, a new method for deriving K values from the displacement of the GFRP composite blade surface was proposed in this paper.The correctness of the theory was verified by experiments.It is proved by the comparison between experiment and simulation that it is feasible to study the interlaminar fracture toughness response through the surface displacement of the GFRP composite blades shimmy.This study provides a new idea and method for the strength prediction of GFRP composite windturbine blades.
  • Related Articles

    [1]WANG Hongxing, LI Huijie, LI Chunfeng, LIU Mingli. From Traditional to Intelligent: Advances in Wood Color Treatment Technologies[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3010-3026.
    [2]SU Jiayun, LUO Lijuan, SHEN Yangyu, YU Yan, YANG Rilong. Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2155-2166. DOI: 10.13801/j.cnki.fhclxb.20240722.001
    [3]ZHENG Shuqing, ZHANG Yi, MU Jiaxin, WANG Yongjuan, WANG Fengqiang, ZHANG Zhijun. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002
    [4]JIANG Jun, DU Jingjing, XU Xinwu, MEI Changtong. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. DOI: 10.13801/j.cnki.fhclxb.20231019.004
    [5]ZHOU Jing, WANG Luzhen, XU Zhaoyang, LI Dagang, CHEN Chuchu. Research progress on preparation and functional application of densified wood films[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6488-6499. DOI: 10.13801/j.cnki.fhclxb.20230530.002
    [6]LIU Shengwei, LEI Yunxiao, ZHANG Jiawei, BAI Chengyu, HU Qinyong. Effects of preexisting surface damage on bonding performance at CFRP-wood interfaces[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4720-4732. DOI: 10.13801/j.cnki.fhclxb.20221014.003
    [7]Performance of wood-ceramic composites impregnated with methyl triethoxy silane modified sol[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 122-126.
    [8]Effects of carbonization conditions on properties of carbon fiber prepared from liquefied wood in phenol[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 74-78.
    [9]FU Yun-lin, ZHAO Guang-jie, CHUN Sukyoung. Microstructure and physical properties of silicon dioxide/ wood composite[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 52-59.
    [10]CHEN Zhilin, WANG Qun, ZUO Tieyong, FU Feng, WANG Jinlin, YE Kelin. TECHNIQUES AND PROPERTIES OF THE WOOD-INORGANIC COMPOSITE[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 128-132.

Catalog

    Article Metrics

    Article views (940) PDF downloads (525) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return