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Progress in the application of upconversion composite materials in photocatalysis

SUN Shishu, ZHANG Yan, LIU Jinrui, LI Bangsen , SUN Tianyi* , SHI Zaifeng’
(Hainan Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Chemistry and Chemical

Engineering, Hainan Normal University, Haikou 570100, China)

Abstract: This article provides an overview of the research progress of upconversion composite materials in pho-
tocatalysis. Due to the low utilization rate of solar radiation by traditional photocatalytic semiconductor materials,
their practical application in environmental governance and energy conversion is limited. Upconversion composite
materials can convert low-energy radiation into high-energy emission, improve the responsiveness of photo-
catalysts to infrared-visible light, and thus improve the utilization rate of solar energy. This article first elaborates on
the basic principles and application prospects of photocatalytic reactions and then focuses on the preparation
methods, performance characteristics, advantages, and disadvantages of three types of upconversion composite
photocatalysts: Rare earth, quantum dots, and triplet-triplet annihilation. It also introduces optimization strategies
that use precious metals or alloys to enhance upconversion effects and charge separation efficiency with examples.
The purpose of this article is to provide new ideas and references for photocatalysis research and promote the ap-
plication and development of upconversion composite materials in the field of photocatalysis.

Keywords: upconversion; composite materials; photocatalysis; rare earths; quantum dots; energy conversion;

environmental governance

TEEILHAE T, OB AR —Fmsc.  BUA DU FE AR sk Y 70 i 25 e R
PROR AT P A B BE DR AL AL RS YR BT i, 2 F Lo AN AR, R
T Z R RS SCHAL R BRI R A DAL KRB AR LR BT 2 ik
FUER, ESEMR B EGE (e e, ISE FERRYIRGER, Al (VB) TP TR RE R OR TR

W BHA: 2023-04-17; fEEIAHA: 2023-05-31; RABH: 2023-06-11; M EHZATE: 2023-06-14 16:59:41

M4 B & Hidlk: https://doi.org/10.13801/j.cnki.fhclxb.20230614.004

HEWH: EXEARRYRES (22168017); HFRIE HABHAIE 4 (420QN259; 222CXTD513; 420QN251)
National Natural Science Foundation of China (22168017); Hainan Provincial Natural Science Foundation of China (420QN259; 222CXTD513;
420QN251)

EISMEE: VR —, W, PRIB, B4R R 0W, DR 05 19 o efi#Efl. E-mail: tianyi870328@163.com;
LR, W, B, WS, BT 1 A ML E-mail: zaifengshi@163.com

SIS PR, SR, XU, 25, EEAE S PRHE LA T A BT S IR 1] & FRR, 2023, 40(12): 6516-6527.
SUN Shishu, ZHANG Yan, LIU Jinrui, et al. Progress in the application of upconversion composite materials in photocatalysis[J]. Acta Materiae
Compositae Sinica, 2023, 40(12): 6516-6527(in Chinese).



https://doi.org/10.13801/j.cnki.fhclxb.20230614.004
mailto:tianyi870328@163.com
mailto:zaifengshi@163.com

N5 BRC R G PPRHE AL H B R BIT T 3

£ 6517 -

85T HLARA 95 B 0 TR BRAT B 4 (CB) 1,
JEAE VB th B AR Y 25 0, A HL TS OXUHE
P AR URE (1) P98 M AT 22 [R) A A W R RS U
Bifi 5 FEL o VR FE A3 0, X SR HL far T HEE o SRR
Mo PR s B AR RS e 5
2T B B m s N W Bk AR AR AR, R
RABAGIE OB, DT 7 A — 26 B ol AR A
1 E H A R A — o F AR T B, TEOGAHE
TR fif 5 G i A AR v, 7 AR O AR L RS X
g3 ) W R A RIK A AR, B S B R AR )
(¢0,) FHFRHE A th 5 («OH) FEIEEE BBl , LA
PR A B B AR PR B R AR E Y R S A
ML G 58 0 AE D, O R A b R i o —
AR A KL

SR, A% 50 1Y 21 A G A Ak ) o B A R
I B RE ,  HRE WU R AR Ot (1 7 K B AR S
4%-~5%), 3 BH K PHAE R R R, Bk,
W] $2 g 2 S AOE A AR TR 0 4 T e o, Y
TG A A 45035 TR e 1) — > EE 2R K

%% (Upconversion, UC) & —Ff dE £k 1
et R, HrP AN BOE 2 5K RE = O R
AR AT @t UC, IELLAMETT DAL
SRl WG B AT WG LU A 54, i
J& TR RO R L, IR v T X R
PHER S PRI 2 AR, TEARS M R
U b 5 R A Bk 7 B 70 ok 58 B 401
M o7 P A — Fh A A B S H By 5w, JRHUE T
S o 1

ARG TELRAR B 5 5 b RHE DG A Al sk
o RS R, TR P Ak T ik R
So AEHLEAR T ERRRE S MEHER RS
P 4 S e 1 T T TR B B AE AL, R4
THi . AN EES - ERE K (Triplet-
triplet annihilation upconversion, TTA-UC) 7 453
il F2 LR AN Y b 5 4 525 AORL G Pk R AR SRR Bk
Mo mETHE TR B4R 8l G 4% BAA RS
B F I J& (Surface plasmon resonance, SPR) 4{ i/
9 KR XF Tk B 52 G pE R R RUR
TRV A 43 15 20036 45y T A 3 A o

1 FHEGREGMBERELPINA
L1 FiEFEREEEBREBIAELNA

B AW L B r DU AL R A 6 A e e
ReR BROkUL, L rimzEE BB

AR A5 T i, X ] LA AT RHE OB RE R AT A
PRFFAE B i A ORI TRV, 39n 1 bk B 5%
Betble . Hoh, B T REHAS H M BEAT 45
5 R RHEEAR AL, B2 B A SRR R
(4 AR EE AN 22 oY, T PREF 1T AR B9 B 46
PERE. W LB 7 THMAR R TR, BT
YRy SR e ssb kL, DLksk HoltsaPhfg. 2R
i, ESEPRI A, B T i s s . HAR
MR R R T R IRE, WBERRCRAR . XD
i JEE 0 MR S X S 2 b BT SRS Y T OR AE

o 18 T 1B 2R B RO AR R ) £ T ik
AR, WKL RIR-BEIRE L s L
BL(CVD). Bk rh#OLTIR (PLD). B 1 A M
BB A G A L o RPIEAE S B Y O
Wz —, TEW KA KPR A8 G e bt
o BV R B A AT RV i e R R, e
e i 5 R AT KRNSO Al A 1Y
LRSI Ah B TR AR R LY
i b b B 52 A AR 95 D vk o T IR Il
TR W 00 K A R 5 ok R R TR
AP, i B T R -G i
S N E FT AR o S AR BT R RTR VA I
1538 24 i B e A T AR S, RN AT R A
JBE o SR Ji R SR I O B A B L AR AT BT o B LB
B bh o B - I I AT LAAR G M 8 ) 42 g
&, il DLl o5 b R e 52 5 B Rk 0
FgZ

X B T5 O LB T B A R WO R B
Rt T Z MR, RERITIEECA A SIS
B R o Ik B TR IO T TR R AR A R
UK | BA R B 45 ) S R 548 0%
JrE AR RS N R .

i B TR AR Ze LB A b el e A
ENGINOE A R ol X7 P/ 2 (e L V5 R
AT S HACR A H DTk o ERR R T B
AR, R AR R B B AR
FIASASOETRESAHIL I RESL, M $ i L
et SRR o T w A% B0 3 TR RER F A
Pl L VSURLLIVPRE/ i SN (e oA R D EZ /713
JERIZE R X E 5 ol R YRR A R E R . R
BRI Rk B M R, L e d R Ol R B
B2 MR B iy, 2 B E ORI RE A5 8 1Y
)L, AT 2 e R N . N, AE Yb*



+ 6518 -

EEMRER

B4 1Y NaYF, f ik, Yb™ (48 i i bl sy,
R R A O eR EELOR , (FUETE ErB % 1Y) NaYF,
s, B ErB R EE R, L AR &
S B S BN S /N

i 1 B 345 e R 4R = W b b R A O A Ak R
LRI S — AR R . B, 0
ZM BB AR E g, TR R RAL
L YIRS [ w7 2/
DL b AN R A B B 2 B A RE AR 0, R IE R
S E, WO AR RS RS R R E R . A
[] 0 5 1= 25 - 48 2% 0T LASUAR 3= fb % 19 JR 35 i
FIRES A, TR & R

R, YRR S AR R AT DL T AT Ab
o, IR AR AL 45 FL A &y, U0 Tm 5% Er,
Tm 55 Er &5 W AE Sy A 59590 38 52 22 20 fE £ % 32
TS WL I ER R RO, KA A
SRt ny ot HANM 1841 Nd. Ho 5 Pr,
W AT DAE AR B R 25 il #,
AR AE X AR

Af UL, B 2R YOO R Tm®™ B T A] LA B R
B R R% . Shen A5 G R T HAT B G
A5 PE B Tm* F1 Yb* 42 2% Bi,WO, 5% #0t M Ak
# o BT Tm*/Yb* 5 BiyWOg Z [H] 77 75 A AL HE &
¥R, Tm*/Yb*:Bi,WOq 52 B T T 2T #F (980 nm)
AT WSEH) LAt fE b AR A A A D
K 1(a) Ao FEBLFERE [, Tai 4518 R FH ¥ -
2k il 25 T Yb*/Tm* 48 44 1 Y,04 I % 8 b1 K}
1 Y,05:Yb* Tm*/Zn0 (Y/Z) & & 65, H k-
eI B A 1(b) Fras . Y,03:Yb*, Tm* AJ
PLKs 3T 2T /1 (NIR) %40 o — 41 58416 (290, 320
1 360nm), 7] WL, $ Y,05:Yb*, Tm* & fill ] ZnO
i R TR ZL AR R RE T, TG SR T
AT T o

A2 7% YO R Ex* Rl AT DL 25 4 e A By |
M, Hrh, Yb™BERE K 980 nm i T 21 5F
36, ¥ RE B AL 4 Brt, i Ert N IE S IRT B
BB AR, TR kAN BErail it 2 F ki
AR A [F] K 1 4% (523 nm Fil 546 nm) F
£19%¢ (655 nm), M SEHL L5532 . Zhang %51
il 28 T — PP 2 A 757 BURN = R FE R R OB RE I
Yb*/Er* k45 2 Bi; 45YDg 04101 V205 I e ¥ W g
% (GC) e AL, M8 GC A Ak 7 it Wz WA SiE f
#| 620 nm, HAEM | 980 nm ¥4 & T AR B 4

BRLL RS, HaE R B ALE W E 1(c) Frs .
FESL LA b, b S A R — A AR T
ERCR B F B . Yao %5 P03l o 00 4l Bl 7K #4 hil
% T BiOLYb* Er*/Bi,0,Z %! 5 i &5 . i + & 1
Yb*' Hl Er*7E 980 nm 1Y 3T 2L A5G N R REIVEH,
AT BN . YT T BiOI/Biy0, S BT 4%
FCI SIS, JREHE TR R . HE Ot
PEALRCR R h T 2 4 RO A 5 I3 45 1) P mD A
BiOL:Yb™ Er*/Bi,0, & & BT G4 Ak 1 F v 7T fiE
A HLER 0 & 1(d) s .

Wi 185 715 4 RO AR — e A5 4
fRAE G AL A S RE DGR A BE . SR, X ks
B B R Z 2RI R, Hrh B
PRSP (i MR VR Z S/ 1= RV e o e 2 N 1 ] D
25 L B, nTDsg &S 5 HAL R
BFZR R RESAMEEEN. Wik, it
i & B E OG5 LR S 1
P RAVFIMREE o BRINZ AL, 38 F5 275 I8 AR 45 1
UL A 55 Al PR 28 X6 [ B e R s, — ik
Uh, B T 0 5 WO A AR B A R T R
e nR e . BESE N DU R OB R B B
G 3 09 F2 AR s A R R B R Y
Bl SR, XELTyiknl e 7epop G al . FoE 1k
FSAS J5 T A ke A Bk, F — 20 BHLAG - e 4
A ALY SE PR ST AR o 25 B iR, 7ER AR
TE T B R ACRE, P A A R
SR FURLAR 55 05 T A
1.2 EFRBE IRBRABELEA

i RUMURE Y L R 4 BUR O (Upconversion
photoluminescence, UCPL) Fl H T fiff |2 5 P i L
B —FPEE A TR A E R A R R SO
SROCAE R e AR . KRR E L. T
RIEMBIE K . KT ATEL . WA EL . ik
PG AL, i T A (QDs) B2 1 B #L
A RHE A A 450358 B T2 9 i 5

il &/ AU 24 0 L RO AR R B A 2 F
Tk, AFEKPGEPY D BRI P piEkP
J8 e 1 B R M - 1 P S L R A S ) 3k
WY, R G A AR B R E AR B A T A
G PERE . HLAh, ARG EE T NE S
St AR 23 R I R TR A FRAL PR BT, DT 52 e D'
HEALYERE o SR A K IR G Oy 7 i B w45
R/ L IR A FUOK B PSSR0, (HH X &



+ 6519 -

INREARAE . eI B MORHEE DA A i 1 I BIF 9T 3
30 =
(@ o © Kisn G
; D, 2 4Gy _ 4 "
A i @ . E Giip
VE ; G H i 2H,
A Is450m ' ©O: 5= : & 3 2
i Jp4gam] 1 . L1 3
; °F, 4 & 2
il T — = T &
! e : 3F,Up-conversion L] H “4F.,
Fis FoReeTS /701 nm energy transfer 20 BT W H i
3p.visible light it H
M| 5 Pl s ¥ ig
S °F, OH. T T 2
4 ‘-" h* § i = :
*Fo = “3 - *H, = 15 _-" ;: —y Ty,
Yb Tm *OH > > 7 ‘
=y : u: o < 4
2 *Fspy 5 .y E a Lo,
- <0, m HI
(b) Reducti:olg) 2 : i
O EEA 10 = -—."‘ HER Tiin
u yis CB—— »F EE
&0 - I . I
E r—-.\ 1 13/2
5 Yo+ Tm*, gy i ZnO s
2F %L =
> Y,0;, . gl €1 €
VB . el €] ¢
Yb* O-ggu ation - :
0 Yb - 3 r 1 1sn
)
@ ‘_\.‘. CIP/RhB
P o \ Degradation
2 ) product
\ s
1.0+ e, Viw
5 =
I B N o T T i
z 0+
£
=
5 1.0-
o
=
ds
J
2.0 4 CIP/RhB ™
BYE :' J BiOL:Yb*, Er*
. CIP/RhB ¢ Degradation .
v Bi,0, 4. product Bi,0,
[

CIP—Ciprofloxacin; NIR—Near-infrared light; NHE—Normal hydrogen electrode; RhB—Rhodamine B
Fl1 (a) Tm™/Yb*:Bi,WOq & BAALTIEHEALILE; (b) Y,05:Yb™, Tm™/Zn0 A AT MEHMHLEI R, (c) SBBV-GC600 [1fg it
BAHLHI; (d) BiOLYD® Er’/BipOy ZA PR CAMLN I 1T AL, Z BI5BREE T REA B>

Fig.1 (a)Photocatalytic mechanism of upconversion photocatalyst Tm*/Yb*":Bi,WO4"";

117 (b) Schematic diagram of photocatalytic mechanism of

Y,05:Yb*, Tm*/Zn0 composite photocatalyst'?; (c) Energy transfer mechanism of SBBV-GC600"""; (d) Possible mechanisms of type Il and Z-type

heterojunctions in photocatalytic applications of BiOI:Yb*,Er**/Bi,0, composite materials’®’
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reaction mechanism of 1% carbon quantum dots (CQDs)@CdIn,S,/CdS*"
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Fig.3 Schematic diagram of the energy transfer mechanism of Tm* and
Yb** ions under 980 nm NIR excitation and the photocatalytic
degradation process of toluene on polyethylene terephthalate
(PET)/Tm/Yb doped with NaYF4 (TYN)/TiO, (P25)/QDs film®®!!
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Fig.4 (a)Photon upconversion system composed of Ru(dmb);**
(dmb=4,4'-dimethyl-2,2'-bipyridine) and 9,10-diphenylphenanthrene
(DPA) molecules was Introducing the hydrophobic interlayer space of
montmorillonite (MMT) and its photocatalytic mechanism®; (b)
Schematic diagram of the photocatalytic mechanism of Cd, sZn, ;S and
triplet-triplet annihilation upconversion (TTA-UC) composite system*®;
(c) Green to blue proposed mechanism for photocatalytic hydrogen

production under conversion irradiation®”)
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Fig.6 (a) Schematic diagram of possible charge separation and transfer
in CoFe@ N/S-codoped mesoporous carbon (NSC) catalyst under visible
light irradiation'*”; (b) Photogenerated carrier separation and
photocatalytic hydrogen evolution process of FeCo@N-doped
graphitized carbon (NGC)/g-C3N, system!*; (c) Photocatalytic process of
CuNi-TiO, photocatalyst under sunlight'”
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