留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价

王唯 孟增东 罗丽琳 张玉勤 蒋业华

王唯, 孟增东, 罗丽琳, 等. 羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 王唯, 孟增东, 罗丽琳, 等. 羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价[J]. 复合材料学报, 2022, 40(0): 1-9
Wei WANG, Zengdong MENG, Lilin LUO, ZHANGYuqin, Yehua JIANG. Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites[J]. Acta Materiae Compositae Sinica.
Citation: Wei WANG, Zengdong MENG, Lilin LUO, ZHANGYuqin, Yehua JIANG. Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites[J]. Acta Materiae Compositae Sinica.

羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价

基金项目: 国家自然科学基金项目(31660262)
详细信息
    通讯作者:

    张玉勤,博士,教授,博士生导师,研究方向:生物医用材料 Tel:13708861766 E-mail: zyqkust@163.com

  • 中图分类号: TB332

Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites

  • 摘要: 为了改善Ti-13Nb-13Zr医用钛合金的生物活性与细胞相容性,利用放电等离子烧结(SPS)技术制备了Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料并进行退火处理,研究了两种材料的显微组织、力学性能、表面润湿性、体外矿化行为及细胞增殖与凋亡等生物学性能。结果表明:合金主要由β-Ti和ɑ-Ti相组成,复合材料由β-Ti、ɑ-Ti、HA相及少量陶瓷反应相(Ca3(PO4)2、CaZrO3、CaO)组成,退火后部分初生ɑ-Ti转变为β-Ti且组织更为均匀,HA的加入会使得晶粒细化;退火后两种材料抗压强度、屈服强度、屈强比和弹性模量均略微下降;HA的加入提高了复合材料亲水性、类骨磷灰石形成能力、细胞增殖率并降低了细胞凋亡率;综合分析,退火后的5HA / Ti-13Nb-13Zr复合材料抗压强度、屈服强度和弹性模量分别为1744±9 MPa、1493±12 MPa和43±1.6 GPa,具有优异的类骨磷灰石形成能力,同时细胞增殖率达到(99.1±0.8)%,表明HA的加入明显提高了Ti-13Nb-13Zr合金的生物活性与细胞相容性。

     

  • 图  1  Ti-13Nb-13Zr合金和5羟基磷灰石(HA)/Ti-13Nb-13Zr复合材料的物相分析

    Figure  1.  Phase analysis of Ti-13Nb-13Zr alloy and 5 hydroxyapatite (HA)/Ti-13Nb-13Zr composite before and after annealing

    图  2  退火前后Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的微观形貌:(a)(b)为烧结态合金;(e)(f)为烧结态复合材料;(c)(d)为退火态合金;(g)(h)为退火态复合材料

    Figure  2.  The microstructure of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite before and after annealing:(a)(b)sintered alloy;(e)(f)sintered composite;(c)(d)annealed alloy;(g)(h)annealed composite

    图  3  退火前后Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的力学性能

    Figure  3.  Compressive properties of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite before and after annealing

    图  4  纯H2O和NaCl溶液在Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的表面接触角

    Figure  4.  The contact Angle of pure water and NaCl solution on the surface of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite

    图  5  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料在SBF溶液中浸泡7天的微观形貌图:(a)合金;(b)复合材料

    Figure  5.  The microstructure of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing:(a)alloy;(b)composite

    图  6  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料的(a) OD值和(b)细胞增殖率(*p< 0.05; **p< 0.01)

    Figure  6.  OD values (a) and cell viabilities (b) of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing(*p< 0.05;**p< 0.01)

    图  7  退火态Ti-13Nb-13Zr合金和5HA/Ti-13Nb-13Zr复合材料浸提液诱导MG63细胞凋亡实验:(a)合金;(b)复合材料;Q1区表示死细胞,Q2表示凋亡晚期细胞,Q3表示正常细胞,Q4表示凋亡早期细胞

    Figure  7.  Apoptosis experiment of MG63 cells induced by extraction of Ti-13Nb-13Zr alloy and 5HA/Ti-13Nb-13Zr composite after annealing: (a) alloy; (b) composite; Q1 represents dead cells, Q2 represents late apoptotic cells, Q3 represents normal cells, and Q4 represents early apoptotic cells

    图  8  细胞凋亡率统计图(*p< 0.05; **p< 0.01)

    Figure  8.  Apoptosis experiment of MG63 cells induced by extraction of Ti-13Nb-Zr alloy and 5HA/Ti-13Nb-13Zr composite(*p< 0.05; **p< 0.01)

    表  1  两组材料在SBF溶液浸泡后的表面成分分析

    Table  1.   Surface composition analysis of two groups of materials soaked in SBF solution

    MaterialElement/at.%
    TiONaCaPClK
    A1.119.639.7--38.31.1
    B0.646.615.710.16.813.37.5
    下载: 导出CSV
  • [1] BOYER R, WELSCH G, COLLINGS E W. Materials Properties Handbook: Titanium Alloys[M]. Ohio: ASM International, Materials park, 1994.
    [2] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science,2009,54:397-425. doi: 10.1016/j.pmatsci.2008.06.004
    [3] CHEN Q, THOUAS G A. Metallic implant biomaterials. Materials Science and Engineering: R[J]. 2015, 87: 1-57.
    [4] 王莉丽, 王秀峰, 丁旭, 等. Ti/HA生物复合材料的研究进展[J]. 材料导报, 2012, 26(17):80-82. doi: 10.3969/j.issn.1005-023X.2012.17.017

    WANG Lili, WANG Xiufeng, DING Xu, et al. Research progress of Ti/HA biocomposites[J]. Journal of Materials Review,2012,26(17):80-82(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.17.017
    [5] CHANG B S, LEE C K, HONG K S, et al. Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials,2000,21(12):1291-1298. doi: 10.1016/S0142-9612(00)00030-2
    [6] 刘宣勇. 生物医用钛材料及其表面改性[M]. 化学工业出版社, 2009:

    LIU Xuanyong. Study on surface modification and selective biological effects of Titanium implant materials [M]. Publishing House of Chemical Industry, 2009. (in Chinese)
    [7] 陈菲. 羟基磷灰石生物医用陶瓷材料的研究与发展[J]. 中国陶瓷, 2006, 42(4):8-10. doi: 10.3969/j.issn.1001-9642.2006.04.002

    CHEN Fei. Research and development of hydroxyapatite biomedical ceramic materials[J]. Chinese Ceramics,2006,42(4):8-10(in Chinese). doi: 10.3969/j.issn.1001-9642.2006.04.002
    [8] MARDER R, ESTOURNES C, CHEVALLIER G, et al. Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: A model system of YAG[J]. Journal of the European Ceramic Society,2015,35(1):211-218. doi: 10.1016/j.jeurceramsoc.2014.08.001
    [9] 何远怀. 羟基磷灰石/Ti-13Nb-13Zr生物材料的制备和性能研究[D]. 昆明理工大学, 2018.

    HE Yuanhuai. Preparation and properties of hydroxyapatite/Ti-13Nb-13Zr biomaterials[D]. Kunming University of Science and Technology, 2018. (in Chinese)
    [10] 刘万理, 张玉勤, 蒋业华, 等. 固溶温度对SPS烧结Ti-24Nb-4Zr-8Sn合金组织和力学性能的影响[J]. 金属热处理, 2017, 42(4):99-103.

    LIU Wanli, ZHANG Yuqin, JIANG Yehua, et al. Effect of solution temperature on microstructure and mechanical properties of SPS sintered Ti-24Nb-4Zr-8Sn alloy[J]. Heat Treatment of Metals,2017,42(4):99-103(in Chinese).
    [11] 雷晓飞, 董利民, 张志强, 等. 退火工艺对TC6钛合金棒材显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(S1):80-84.

    LEI Xiaofei, DONG Limin, ZHANG Zhiqiang, et al. Effect of annealing process on microstructure and mechanical properties of TC6 titanium alloy bars[J]. Rare Metal Materials and Engineering,2017,46(S1):80-84(in Chinese).
    [12] 雷雨涛, 朱斌, 张玉勤, 等. 退火温度对HA/Ti-24Nb-4Zr复合材料组织与性能的影响[J]. 金属热处理, 2020, 45(10):94-98.

    LEI Yutao, ZHU Bin, ZHANG Yuqin, et al. Effect of annealing temperature on microstructure and properties of HA/Ti-24Nb-4Zr composites[J]. Heat Treatment of Metals,2020,45(10):94-98(in Chinese).
    [13] 王海, 魏芬绒, 邓家彬, 等. 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016, 45(22):109-115.

    WANG Hai, WEI Fenrong, DENG Jiabin, et al. Discussion on the factors affecting the strength ratio of titanium alloy and the mechanism of action[J]. Hot Working Technology,2016,45(22):109-115(in Chinese).
    [14] 熊汉城, 黄海广, 李志敏, 等. 退火温度对大口径 TC4 合金无缝管组织与性能的影响[J]. 金属热处理, 2019, 44(12):107-111.

    XIONG Hancheng, HUANG Haiguang, LI Zhimin, et al. The effect of annealing temperature on the microstructure and properties of large-diameter TC4 alloy seamless pipes[J]. Heat Treatment of Metals,2019,44(12):107-111(in Chinese).
    [15] 中国国家标准化管理委员会. 钛及钛合金牌号和化学成分: GB/T 3620.1-2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Designation and composition of titanium and titanium alloy: GB/T 3620.1-2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [16] 姜久仰, 刘宏宇, 徐吉林, 等. 医用Ti-6Al-4V合金表面超疏水涂层的制备及生物学性能[J]. 稀有金属材料与工程, 2019, 48(6): 1884~1891.

    JIANG Jiuyang, LIU Hongyu, XU Jilin, et al[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1884~1891. (in Chinese)
    [17] NING C Q, ZHOU Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method[J]. Biomaterials,2002,23:2909-2915. doi: 10.1016/S0142-9612(01)00419-7
    [18] 吴泽恩, 胡锐, 张铁邦, 等. 间隙原子O对高Nb-TiAl合金显微组织与相转变的影响[J]. 金属学报, 2013, 49(11):1381-1386.

    WU Zeen, HU Rui, ZHANG Teibang, et al. Effect of interstitial atom O on microstructure and phase transition of high Nb-TiAl alloy[J]. Journal of Metals,2013,49(11):1381-1386(in Chinese).
    [19] GIBSON L J. The mechanical behaviour of cancellous bone[J]. Journal of Biomechanics,1985,18:317-328. doi: 10.1016/0021-9290(85)90287-8
    [20] MENZIES K. L., JONES L. The Impact of Contact Angle on the Biocompatibility of Biomaterials[J]. Optometry and Vision Science,2010,87(6):387-399. doi: 10.1097/OPX.0b013e3181da863e
    [21] OZASA K. , NEMOTO S., LI Y. Z., et al., Contact angle and biocompatibility of sol-gel prepared TiO2 thin films for their use as semiconductor based cell viability sensors[J]. Surface and Interface Analysis,2008,40(3-4):579-583. doi: 10.1002/sia.2729
    [22] JIANG L, WANG R, YANG B, et al. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and Applied Chemistry,2002,72(1-2):73-81.
    [23] CHA T G, YI J W, MOON M W, et al. Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness[J]. Langmuir,2010,26(11):8319-8326. doi: 10.1021/la9047402
    [24] CHAU T T, BRUKARD W J, KOH P T L, et al. A review of factors that affect contact angle and implications for flotation practice[J]. Adventure Colloid Interface Science.,2009,150(11):106-115.
    [25] 杜晨光, 夏帆, 王树涛, 等. 仿生智能浸润性表面研究的新进展[J]. 高等学校化学学报, 2010, 31(03): 421-431.

    DU Chenguang, XIA Fan, WANG Shutao, et al, Chemistry Journal of Chinese Universities, 2010, 03: 421-431. (in Chinese)
    [26] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties[J]. Biomaterials,2003,24(13):2161. doi: 10.1016/S0142-9612(03)00044-9
    [27] HALLAB N J, BUNDY K J, O'CONNOR K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characterization for directed cell adhesion[J]. Tissue Engineering,2001,7(1):55-71. doi: 10.1089/107632700300003297
    [28] TANAKA T, HIROSE M, KOTOBUKI N, et al. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells[J]. Materials Science and Engineering:C,2007,27(4):817-823. doi: 10.1016/j.msec.2006.09.019
    [29] LIU K, LIU P C, LIU R, et al. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry[J]. Medical Scicence Monitor Basic Research,2015,21:15-20. doi: 10.12659/MSMBR.893327
    [30] DU PL, HAMMAN J H. In vitro evaluation of the cytotoxic and apotogenic properties of aloe whole leaf and gel materials[J]. Drug and Chemical Tocicology,2014,37:169-177. doi: 10.3109/01480545.2013.834356
  • 加载中
计量
  • 文章访问数:  112
  • HTML全文浏览量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 录用日期:  2022-01-15
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-02-23

目录

    /

    返回文章
    返回