留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PEDOT:PSS及其纳米复合材料热电性质的研究进展

鲍程鹏 周亚杰 董岚 吴子华 李奕怀 谢华清 王元元

鲍程鹏, 周亚杰, 董岚, 等. PEDOT:PSS及其纳米复合材料热电性质的研究进展[J]. 复合材料学报, 2022, 40(0): 1-17
引用本文: 鲍程鹏, 周亚杰, 董岚, 等. PEDOT:PSS及其纳米复合材料热电性质的研究进展[J]. 复合材料学报, 2022, 40(0): 1-17
Chengpeng BAO, Yajie ZHOU, Lan DONG, Zihua WU, Yihuai LI, Huaqing XIE, Yuanyuan WANG. Research progress in thermoelectric properties of PEDOT:PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica.
Citation: Chengpeng BAO, Yajie ZHOU, Lan DONG, Zihua WU, Yihuai LI, Huaqing XIE, Yuanyuan WANG. Research progress in thermoelectric properties of PEDOT:PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica.

PEDOT:PSS及其纳米复合材料热电性质的研究进展

基金项目: 国家自然科学基金(51876111,52176081);上海市自然科学基金(21 ZR1424500);上海市“曙光”项目(18 SG54);上海市科委地方能力建设项目(22010500700)
详细信息
    通讯作者:

    王元元,博士,教授,硕士生导师,研究方向为新能源材料与器件 E-mail: wangyuanyuan@sspu.edu.cn

  • 中图分类号: TK11+5

Research progress in thermoelectric properties of PEDOT:PSS and its nanocomposites

  • 摘要: 近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、重量轻、机械柔韧性好、热导率较低。添加入不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(figure of merit, ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT:PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT:PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机理。

     

  • 图  1  不同时间段的重要研究工作及其标志性成果

    Figure  1.  Important research work and landmark results in different time periods

    图  2  不同处理方法及其机理

    Figure  2.  Different treatment methods and their mechanisms

    图  3  a)PEDOT:PSS化学式; b)PEDOT:PSS电阻率随温度变化的性质[22] ;c)EG处理的PEDOT:PSS随时间变化的TE性能[28];d)用不同浓度的甲酸处理的PEDOT:PSS薄膜的平均电导率[33]

    Figure  3.  a)The chemical formula of PEDOT:PSS ; b)Dependence of electrical resistivity of PEDOT:PSS on temperature[22]; c)TE performance of PEDOT:PSS processed by EG over time[28]; d)Average conductivity of PEDOT:PSS films treated with different concentrations of Formic acid [33]

    图  4  不同有机溶剂改性的PEDOT:PSS薄膜的电导率a)和塞贝克系数b)随温度变化的性质[25]

    Figure  4.  Temperature dependences of The electrical conductivity a) andSeebeck coefficient b) of PEDOT:PSS film prepared by modification with different organic solvents[25]

    图  5  乙二醇处理前后PEDOT:PSS的形态变化示意图[43]

    Figure  5.  Schematic diagram showing the morphological changes in the PEDOT:PSS film after EG treatment[43]

    图  6  NaOH水溶液处理SWNT/PEDOT:PSS的形态变化示意图及其功率因数随NaOH浓度变化图[44]

    Figure  6.  Schematic diagram of morphology change of SWNT/PEDOT:PSS treated with NaOH aqueous solution and its power factor change with NaOH concentration[44]

    图  7  纯PEDOT:PSS薄膜和PEDOT:PSS/MWCNT复合薄膜的FTIR光谱[47]

    Figure  7.  FTIR spectra of pure PEDOT:PSS and nanocomposites composed of PEDOT:PSS-coated MWCNTs[47]

    图  8  PEDOT:PSS/Bi2Te3-NWs复合材料制备过程示意图[59]

    Figure  8.  Schematic illustration showing the preparation process of PEDOT:PSS/Bi2Te3-NWs composites[59]

    图  9  不同BST NSS含量的BST NS/PEDOT:PSS复合膜的载体浓度和迁移率;插图显示了复合膜中的能量滤波效果[60]

    Figure  9.  Carrier concentration and mobility as a function of the content of BST NSs of the drop cast BST NS/PEDOT:PSS composite films; The inset shows the illustration of the energy filtering effect in the composite films[60]

    图  10  a)Bi2Te3的质子辐射的示意图和Bi2Te3/PEDOT:PSS复合薄膜的合成; b)TEM图像和c-e)HRTEM图像(红色虚线的区域I,II和III中,分别是Bi2Te3/PEDOT:PSS复合材料,使用12 MeV质子辐照合成的Bi2Te3[62]

    Figure  10.  a) A schematic showing the proton irradiation of Bi2Te3 and the synthesis of Bi2Te3/PEDOT:PSS composite thin films; b) TEM image and c–e) HRTEM images (from the regions I, II, and III marked in red dashed squares, respectively) of Bi2Te3/PEDOT:PSS composites synthesized using 12 MeV proton-irradiated Bi2Te3[62]

    图  11  复合薄膜内部结构[64]

    Figure  11.  Internal structure of composite film[64]

    图  12  未镀铜离子和镀过铜离子的Bi0.5Sb1.5Te3的示意图[65]

    Figure  12.  Schematic diagram of bi0.5Sb1.5Te3, uncoated and copper-coated[65]

    图  13  不同计量AgxTe的XRD图和晶体结构图[68]

    Figure  13.  XRD and crystal structure of AgxTe at different measurements[68]

    图  14  利用Cu-Bi0.5Sb1.5Te3/PEDOT:PSS复合薄膜自制的热电器件[75]

    Figure  14.  A thermoelectric device was fabricated using Cu-Bi0.5Sb1.5Te3/PEDOT:PSS composite film[75]

    表  1  试剂改性PEDOT:PSS

    Table  1.   Reagent modification of PEDOT:PSS

    Treatment methodConductivity(S/cm)Seebeck coefficient(μV/K)PF(μW/mK2)ZTRef
    No processing0.2115.45×10−3[37]
    Apply alternating current137316.538.6[24]
    DMSO80[25]
    DMSO,EG1.75×10−3[26]
    DMSO,EG3001.07×10−2[27]
    DMSO,EG0.42(DMSO)
    0.28(EG)
    [28]
    DMSO、PEO167738.4±7.1157.35[29]
    DMF、ZnCl2140026.198.20.125[30]
    H2SO4(pre- process)100[31]
    H2SO4(post- process)4380[36]
    HCOOH2050[33]
    HCOOH190020.680.60.32[34]
    H2C2O4800[35]
    H2SO4、NaOH217039.23340.29-0.49[37]
    Thionyl chloride115.9[82]
    IL46.7[83]
    IL(X-ray)116338.8175[84]
    下载: 导出CSV

    表  2  碳基材料复合PEDOT:PSS

    Table  2.   Nanocomposites with PEDOT:PSS matrix and Carbon material addidctions

    Additive materialTreatment methodConductivity(S/cm)Seebeck coefficient
    (μV/K)
    PF(μW/mK2)ZTRef
    SWCNTS15.8[39]
    SWCNTS3085.426.95224[40]
    SWCNTSH2SO42667.6545.72[41]
    SWCNTSDMSO745.437.9108.7[42]
    CNTEG83147185[43]
    SWNTNaOH170155.65260.39[44]
    SWCNTIon-Exchange Effect1602.633.4182.7[46]
    SWCNTIL173221.965.7[85]
    GOD/SWCNT103613.819.90.00322[86]
    CdotsH2SO41753.92148.27[48]
    rGOBar-coating230[49]
    GOHydrazine hydrate30.251947.40.084[51]
    下载: 导出CSV

    表  3  半导体TE材料与PEDOT:PSS复合

    Table  3.   Semiconductor thermoelectric materials are compounded with PEDOT:PSS

    Additive materialTreatment methodConductivity
    (S/cm)
    Seebeck
    coefficient
    (μV/K)
    PF
    (μW/mK2)
    ZTRef
    Bi2Te3-nanowiresLayer-by-layer assembly40116.310.60.01[59]
    Bi2Te3Drop casting1295.2132.260.05[60]
    Bi2Te3 nanowiresSpin coating (PSVA)102647226[61]
    Bi2Te3Drop casting (proton irradiation)1350493240.32[62]
    Bi0.5Sb1.5Te3Drop casting8.3[64]
    Bi0.5Sb1.5Te3Drop casting (two-step reduction process)1285493080.484[21]
    Cu-Bi0.5Sb1.5Te3Drop casting (copper plating)227037.1312[65]
    AgNWsDrop casting84.8418.328.552.42×10−3[75]
    Ag2TeVacuum filtration (wet-chemical method)397.275221.7[67]
    AgXTeTopotactic chemical transformation72[68]
    Ag2SeDrop casting58151.98178.59[72]
    ZnOSpin coating9.1220.4[69]
    SnSVacuum filtration19.527.8[70]
    Sb2Te3Polar organic solvents aided layer-by-layer10642.419.090.1[71]
    Bi2Te3-nanowires7.450.048[81]
    下载: 导出CSV
  • [1] PARK T, PARK C, KIM E. et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips[J]. Energy & Environmental Science,2013,6(3):788-792.
    [2] EL-SHAMY A G. New free-standing and flexible PVA/Carbon quantum dots (CDots) nanocomposite films with promising power factor and thermoelectric power applications[J]. Materials Science in Semiconductor Processing,2019,100:245-254. doi: 10.1016/j.mssp.2019.04.004
    [3] EL-SHAMY A G. Novel hybrid nanocomposite based on Poly(vinyl alcohol)/carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications[J]. Composites Part B:Engineering,2019,174:106993. doi: 10.1016/j.compositesb.2019.106993
    [4] TAN G, STOUMPOS C C, WANG S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance[J]. Advanced Energy Materials,2017,7(18):1700099.1-1700099.9.
    [5] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride made for efficient thermoelectric cooling or temperature management uses Bi2Te3[J]. Advanced Energy Materials,2019,5(6):1800904.
    [6] VISHWAKARMA A, CHAUHAN N S, BHARDWAJ R, et al. Melt-Spun SiGe Nano-Alloys: microstructural engineering towards high thermoelectric efficiency[J]. Journal of Electronic Materials,2021,50(1):364-374. doi: 10.1007/s11664-020-08560-6
    [7] JIANG Q L, LIU C C, XU J K, et al. Improved thermoelectric performance of PEDOT: PSS films prepared by polar-solvent vapor annealing method[J]. Journal of Materials Science Materials in Electronics,2013,24(11):4240-4246. doi: 10.1007/s10854-013-1391-z
    [8] DISALSO F J. Thermoelectric cooling and power generation[J]. Science,1999,285(5427):703-705.
    [9] POMOGAILO S I, DZHARDIMALIEVA G I, ERSHOVA V A, et al. Synthesis and properties of Rh6- and Os3-cluster-containing monomers and their copolymers with styrene[J]. Macromolecular Symposia,2002,186(1):155-160. doi: 10.1002/1521-3900(200208)186:1<155::AID-MASY155>3.0.CO;2-J
    [10] CHEN Y N, ZHAO Y, LIANG Z Q. Solution processed organic thermoelectrics: towards flexible thermoelectric modules[J]. Energy & Environmental Science,2015,8:401-422.
    [11] ZHANG Q, SUN Y M, XU W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently[J]. Advanced Materials,2015,26(40):6829-6851.
    [12] WANG H, YU C. Organic thermoelectrics: materials preparation, performance optimization, and device integration[J]. Joule,2019,3(1):53-80. doi: 10.1016/j.joule.2018.10.012
    [13] 王斌, 邹贺隆, 刘雨, 等. 有机热电材料研究进展[J]. 南昌航空大学学报(自然科学版), 2020, v.34(112):36-47.

    WANG Bin, ZHOU Helong, LIU Yu, et al. Research progress of organic thermoelectric materials[J]. Journal of Nanchang Hangkong University (Natural Science Edition),2020,v.34(112):36-47(in Chinese).
    [14] FAN Z, DU D H, OUYANG J Y, et al. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface[J]. Nano Energy,2018,51:481-488. doi: 10.1016/j.nanoen.2018.07.002
    [15] FAN Z, OUYANG J Y. Thermoelectric properties of PEDOT: PSS[J]. Advanced Electronic Materials,2019,5(11):1800769. doi: 10.1002/aelm.201800769
    [16] GROENENDAAL L B, JONAS F, FREITAG D, et al. Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future[J]. Advanced Materials,2000,7(7):481-494.
    [17] MENG Q F, JIANG Q L, CAI K F, et al. Preparation and thermoelectric properties of PEDOT: PSS coated Te nanorod/PEDOT: PSS composite films[J]. Organic Electronics,2019,64:79-85. doi: 10.1016/j.orgel.2018.10.010
    [18] SHI H, LIU C C, XU J K, et al. Effective approach to improve the electrical conductivity of PEDOT: PSS: a review[J]. Advanced Electronic Materials,2015,4(1):1500017.
    [19] LEE C S, KIM J Y, LEE D E, et al. Flexible and transparent organic film speaker by using highly conducting PEDOT/PSS as electrode[J]. Synthetic Metals,2003,139(2):457-461. doi: 10.1016/S0379-6779(03)00199-1
    [20] LIN Y J, YANG F M, HUANG C Y, et al. Increasing the work function of poly(3, 4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation[J]. Applied Physics Letters,2007,91(9):092127. doi: 10.1063/1.2777147
    [21] LIM J Y, CHO S, KIM H, et al. Optimum thermoelectric performance of Bismuth-Antimony-Telluride Alloy/PEDOT: PSS nanocomposites prepared by a novel redox process[J]. ACS Applied Energy Materials,2019,2(11):8219-8228. doi: 10.1021/acsaem.9b01702
    [22] FRIEDEL B, KEIVANIDIS P E, BRENNER T J K, et al. Effects of layer thickness and annealing of PEDOT: PSS layers in organic photodetectors[J]. Macromolecules,2009,42(17):6741-6747.30. doi: 10.1021/ma901182u
    [23] BENOR A, TAKIZAWA S, CHEN P, et al. Dramatic efficiency improvement in phosphorescent organic light-emitting diodes with ultraviolet-ozone treated poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)[J]. Applied Physics Letters,2009,94(19):127.
    [24] CHONAN Y, SATO N, KOMIYAMA T, et al. Enhancement of thermoelectric properties of PEDOT: PSS films by applying an alternating electric field during preparation[J]. Journal of Electronic Materials,2019,48(6):3854-3858. doi: 10.1007/s11664-019-07150-5
    [25] KIM J Y, JUNG J H, JOO J, et al. Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents[J]. Synthetic Metals,2002,126(2-3):311-316. doi: 10.1016/S0379-6779(01)00576-8
    [26] JIANG F X, XU J K, LU B Y, et al. Thermoelectric performance of poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate)[J]. Chinese Physics Letters,2008,25:2202-2205. doi: 10.1088/0256-307X/25/6/076
    [27] 刘聪聪, 聚3, 4-二氧乙撑噻吩: 聚苯乙烯磺酸及其复合材料的热电性能研究[D]. 硕士学位论文, 江西科技师范大学, 2011.

    LIU Congcong. Thermoelectric Properties of poly3, 4-dioxyethiophene: Polystyrene sulfonic acid and its composites[D]. Master’s thesis, Jiangxi Science and Technology Normal University, 2011. (in Chinese).
    [28] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials,2013,12(8):719-723. doi: 10.1038/nmat3635
    [29] YI C, WILHITE A, GONG X, et al. Enhanced thermoelectric properties of Poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) by binary secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(17):8984-8989.
    [30] FAN Z, DU D H, OUYANG J Y, et al. Significant enhancement in the thermoelectric properties of PEDOT: PSS films through a treatment with organic solutions of inorganic salts[J]. ACS Applied Materials & Interfaces,2016,8(35):23204-23211.
    [31] CRUZ-CRUZ I, REYES-REYES M, LOPEZ-SANDOVAL R. Formation of polystyrene sulfonic acid surface structures on poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate) thin films and the enhancement of its conductivity by using sulfuric acid[J]. Thin Solid Films,2013,531(15):385-390.
    [32] XIA Y J, OUYANG J Y. Significant conductivity enhancement of conductive poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids[J]. ACS Applied Materials & Interfaces,2010,2(2):474-483.
    [33] MENGISTIE D A, IBRAHEM M A, WANG P C, et al. Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells[J]. ACS Applied Materials & Interfaces,2014,6(4):2292-2299.
    [34] MENGISTIE D A, CHEN C H, BOOPATHI K M, et al. Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants[J]. ACS Applied Materials & Interfaces,2015,7(1):94-100.
    [35] LIU C C, SHI H, XU J K, et al. Improved thermoelectric properties of PEDOT: PSS nanofilms treated with oxalic acid[J]. Journal of Electronic Materials,2015,44(6):1791-1795. doi: 10.1007/s11664-014-3557-8
    [36] KIM N, KEE S, LEE S H, et al. Transparent electrodes: highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials,2014,26(14):2268-2272. doi: 10.1002/adma.201304611
    [37] FAN Z, LI P C, OUYANG J Y, et al. Significantly enhanced thermoelectric properties of PEDOT: PSS films through sequential post-treatments with common acids and bases[J]. Advanced Energy Materials,2016,7(8):1602116.
    [38] XU S, HONG M, SHI X L, et al. High-performance PEDOT: PSS flexible thermoelectric materials and their devices by triple post-treatments[J]. Chemistry of Materials,2019,31(14):5238-5244. doi: 10.1021/acs.chemmater.9b01500
    [39] SHI H, LIU C C, JIANG Q L, et al. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance[J]. Nanotechnology,2015,25(24):245401.
    [40] CAO X L, ZHANG M, YANG Y, et al. Thermoelectric PEDOT: PSS Sheet/SWCNTs composites films with layered structure[J]. Composites Communications,2021,27:100869. doi: 10.1016/j.coco.2021.100869
    [41] WEI S S, HUANG X, DENG L, et al. Facile preparations of layer-like and honeycomb-like films of poly(3, 4-ethylenedioxythiophene)/carbon nanotube composites for thermoelectric application[J]. Composites Science and Technology,2021,208:108759. doi: 10.1016/j.compscitech.2021.108759
    [42] DU Y, SHI Y L, MENG Q F, et al. Preparation and thermoelectric properties of flexible SWCNT/PEDOT: PSS composite film[J]. Synthetic Metals,2020,261:116318. doi: 10.1016/j.synthmet.2020.116318
    [43] LEE W, KANG Y H, LEE J Y, et al. Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment[J]. RSC Advances,2016,6(58):53339-53344. doi: 10.1039/C6RA08599G
    [44] LIU S Q, LI H, HE C B. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: PSS nanocomposites[J]. Carbon,2019,149:25-32. doi: 10.1016/j.carbon.2019.04.007
    [45] CHUNG S H, DONG H K, KIM H, et al. Thermoelectric properties of PEDOT: PSS and acid-treated SWCNT composite films[J]. Materials Today Communications,2019,23:100867.
    [46] DENG W J, DENG L, LI Z P, et al. Synergistically boosting thermoelectric performance of PEDOT: PSS/SWCNT composites via the Ion-Exchange effect and promoting SWCNT dispersion by the ionic liquid[J]. ACS Applied Materials & Interfaces,2021,13(10):12131-12140.
    [47] ZHANG Z, CHEN G M, WANG H F, et al. Template-Directed In Situ Polymerization Preparation of Nanocomposites of PEDOT: PSS-Coated Multi-Walled Carbon Nanotubes with Enhanced Thermoelectric Property[J]. Chemistry–An Asian Journal,2015,10(1):149-153. doi: 10.1002/asia.201403100
    [48] EL-SHAMY A G. Acido-treatment of PEDOT: PSS/Carbon Dots (CDots) nano-composite films for high thermoelectric power factor performance and generator[J]. Materials Chemistry and Physics,2020,257(1):123762.
    [49] LIU Y Q, WENG B, RAZAL J M, et al. High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films[J]. Scientific Reports,2015,5:17045. doi: 10.1038/srep17045
    [50] PARK M U, SONG M, LEE S M, et al. Fabrication process of bilayer RGO/PEDOT: PSS film for flexible transparent conductive electrode[J]. Journal of Nanoscience & Nanotechnology,2018,18(9):6147-6151.
    [51] SARABIA-RIQUELME R, G RAMOS-FERNANDEZ, MARTIN-GULLON I, et al. Synergistic effect of graphene oxide and wet-chemical hydrazine/deionized water solution treatment on the thermoelectric properties of PEDOT: PSS sprayed films[J]. Synthetic Metals,2016,222:330-337. doi: 10.1016/j.synthmet.2016.11.013
    [52] LIU Y X, LIU H H, WANG J P, et al. Thermoelectric behavior of PEDOT: PSS/CNT/graphene composites[J]. Journal of Polymer Engineering,2017,38(4):381-389.
    [53] MYINT M T Z, INOUE H, ICHIMURA S, et al. Influence of pressure of nitrogen gas on structure and thermoelectric properties of acid-treated PEDOT: PSS films[J]. Journal of Materials Science:Materials in Electronics,2019,30:13534-13542. doi: 10.1007/s10854-019-01721-2
    [54] VENKATASUBRAMANIAN R, SILVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
    [55] CAO Y Q, ZHAO X B, ZHU T J, et al. Syntheses and thermoelectric properties of Bi2Te3∕Sb2Te3 bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters,2008,92(14):143106. doi: 10.1063/1.2900960
    [56] KIM H S, HONG S J. Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering[J]. Journal of Alloys and Compounds,2014,586:S428-S431. doi: 10.1016/j.jallcom.2013.05.163
    [57] DOU Y C, QIN X Y, LI D, et al. Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy embedded with amorphous SiO2 nanoparticles[J]. Journal of Applied Physics,2013,114:044906. doi: 10.1063/1.4817074
    [58] HE W, ZHANG G, ZHANG X X, et al. Recent development and application of thermoelectric generator and cooler[J]. Applied Energy,2015,143(1):1-25.
    [59] XIONG J H, XU J K, LIU C C, et al. Thermoelectric performance of PEDOT: PSS/Bi2Te3-nanowires: a comparison of hybrid types[J]. Journal of Materials Science Materials in Electronics,2016,27:1769-1776. doi: 10.1007/s10854-015-3952-9
    [60] DU Y, CHEN S, CAI K F, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT: PSS composite films[J]. ACS applied materials & interfaces,2014,6(8):5735-5743.
    [61] KIM W S, ANOOP G, JO J Y, et al. Feasible tuning of barrier energy in PEDOT: PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy,2020,67:104207. doi: 10.1016/j.nanoen.2019.104207
    [62] GOO G, ANOOP G, JO J Y, et al. Proton-irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT: PSS composite films[J]. Advanced Electronic Materials,2019,5(4):1800786. doi: 10.1002/aelm.201800786
    [63] 张红晨, 程颖, 荣剑英. P型Bi0.5Sb1.5Te3热压烧结热电材料的制备与性能研究[J]. 哈尔滨师范大学自然科学学报, 2007(2):45-48.

    ZHANG Hongchen, CHENG Ying, RONG Jianying. Preparation and properties of P Bi0.5Sb1.5Te3 thermoelectric materials by hot pressing[J]. Journal of Natural Science, Harbin Normal University,2007(2):45-48(in Chinese).
    [64] BHARTI M, SINGH A, SAINI G, et al. Boosting thermoelectric power factor of free-standing Poly(3, 4 ethylenedioxythiophene): polystyrenesulphonate films by incorporation of bismuth antimony telluride nanostructures[J]. Journal of Power Sources,2019,435(30):226758.
    [65] WANG Y, HONG M, LIU W, et al. Bi0.5Sb1.5Te3/PEDOT: PSS-based flexible thermoelectric film and device[J]. Chemical Engineering Journal,2020,397:125360. doi: 10.1016/j.cej.2020.125360
    [66] BOYCE J B, HUBERMAN B A. Superionic conductors: Transitions, structures, dynamics[J]. Physics Reports,1979,51(4):189-265. doi: 10.1016/0370-1573(79)90067-X
    [67] MENG Q F, SONG H J, DU Y, et al. Facile preparation of poly(3, 4-ethylenedioxythiophene): poly (styrenesulfonate) / Ag2Te nanorod composite films for flexible thermoelectric generator[J]. Journal of Materiomics,2021,7(2):302-309. doi: 10.1016/j.jmat.2020.10.011
    [68] MAZZIO K A, KOJDA D, RUBIO-GOVEA R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT: PSS thermoelectric materials via stoichiometric control during solution-based synthesis[J]. ACS Applied Energy Materials,2020,3(11):10734-10743. doi: 10.1021/acsaem.0c01774
    [69] DU Y, CAI K F, SHEN S Z, et al. ZnO flower/PEDOT: PSS thermoelectric composite films[J]. Journal of Materials Science:Materials in Electronics,2016,27:10289-10293. doi: 10.1007/s10854-016-5111-3
    [70] CHENG X J, WANG L, WANG X, et al. Flexible films of poly(3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) / SnS nanobelt thermoelectric composites[J]. Composites Science and Technology,2017,155(8):247-251.
    [71] SUN X, SUNT, LU X, et al. Simultaneously improving thermopower and electrical conductivity via polar organic solvents aided layer-by-layer technique[J]. Materials Science in Semiconductor Processing,2020,108(13):104909.
    [72] PARK D, KIM M, KIM J. Fabrication of PEDOT: PSS/Ag2Se nanowires for polymer-based thermoelectric applications[J]. Polymers,2020,12(12):2932. doi: 10.3390/polym12122932
    [73] LIU C C, JIANG F X, XU J K, et al. Free-standing PEDOT-PSS/Ca3Co4O9 composite films as novel thermoelectric materials[J]. Journal of Electronic Materials,2011,40(5):948-952. doi: 10.1007/s11664-010-1465-0
    [74] BUBNOVA O, CRISPIN X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science,2012,5:9345-9362.
    [75] LIU Y, SONG Z J, WANG L J, et al. Preparation of bulk AgNWs/PEDOT: PSS composites: a new model towards high-performance bulk organic thermoelectric materials[J]. RSC Advances,2015,5(56):45106-45112. doi: 10.1039/C5RA05551B
    [76] SON W, LEE S H, KIM J H, et al. Thermoelectric behavior of conducting polymers hybridized with inorganic nanoparticles[J]. Journal of Electronic Materials,2016,45(6):2935-2942. doi: 10.1007/s11664-016-4356-1
    [77] SONG H J, CAI K F. Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator[J]. Energy,2017,125(15):519-525.
    [78] YEE S K, COATES N E, MAJUMDAR A, et al. Thermoelectric power factor optimization in PEDOT: PSS tellurium nanowire hybrid composites[J]. Physical Chemistry Chemical Physics,2013,15(11):4024-4032. doi: 10.1039/c3cp44558e
    [79] BAE E J, KANG Y H, JANG K S, et al. Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment[J]. Scientific Reports,2016,6:18805. doi: 10.1038/srep18805
    [80] LIANG Y D, XIONG Y, ZHENG J J, et al. Study of thermoelectric properties in the PEDOT: PSS/Te double-layer thin film devices[J]. Composites Communications,2021,27:100888. doi: 10.1016/j.coco.2021.100888
    [81] THONGKHAM W, LERTSATITTHANAKORN C, Kanpitcha JIRAMITMONGKON K, et al. Self-Assembled three-dimensional Bi2Te3 nanowire–PEDOT: PSS hybrid nanofilm network for ubiquitous thermoelectrics[J]. ACS Applied Materials & Interfaces,2019,11(6):6624-6633.
    [82] WANG J Y, FAN X, LI Y F, et al. High-efficiency flexible organic photovoltaics and thermoelectricities based on thionyl chloride treated PEDOT: PSS electrodes[J]. Frontiers in Chemistry,2022,9:2296-2646. doi: 10.1039/D2QO90028A
    [83] YANG J J, LI X J, JIA Y H, et al. Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment[J]. Chinese Physics B,2022,31(2):027302. doi: 10.1088/1674-1056/ac2487
    [84] LI X, ZOU R, LIU Z, et al. Deciphering the superior thermoelectric property of post-treatment-free PEDOT: PSS/IL hybrid by X-ray and neutron scattering characterization[J]. npj Flexible Electronics,2022,6:718.
    [85] WEI S S, LIU L, HUANG X, et al. Flexible and foldable films of SWCNT thermoelectric composites and an S-Shape thermoelectric generator with a vertical temperature gradient[J]. ACS Applied Materials & Interfaces,2022,14(4):5973-5982.
    [86] FU P, XIAO J K, GONG J Z, et al. Interfacial enhancement effect of graphene quantum dots on PEDOT: PSS/single-walled carbon nanotubes thermoelectric materials[J]. Synthetic Metals,2021,280:116861. doi: 10.1016/j.synthmet.2021.116861
  • 加载中
计量
  • 文章访问数:  146
  • HTML全文浏览量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 录用日期:  2022-04-23
  • 修回日期:  2022-04-19
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回