留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展

李佳欣 高铭 谭淋 戴启洲 敖天其 陈文清

李佳欣, 高铭, 谭淋, 等. 静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展[J]. 复合材料学报, 2022, 39(4): 1378-1394. doi: 10.13801/j.cnki.fhclxb.20211008.001
引用本文: 李佳欣, 高铭, 谭淋, 等. 静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展[J]. 复合材料学报, 2022, 39(4): 1378-1394. doi: 10.13801/j.cnki.fhclxb.20211008.001
LI Jiaxin, GAO Ming, TAN Lin, et al. Adsorption treatment of wastewater by electrospun nanofiber membranes: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1378-1394. doi: 10.13801/j.cnki.fhclxb.20211008.001
Citation: LI Jiaxin, GAO Ming, TAN Lin, et al. Adsorption treatment of wastewater by electrospun nanofiber membranes: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1378-1394. doi: 10.13801/j.cnki.fhclxb.20211008.001

静电纺丝纳米纤维膜材料吸附处理废水中污染物的研究进展

doi: 10.13801/j.cnki.fhclxb.20211008.001
详细信息
    通讯作者:

    陈文清,博士,教授,博士生导师,研究方向为环境功能材料研制及应用技术研究、富营养化水体及污染场地评估与生态修复 E-mail: wenqingchen621@163.com

  • 中图分类号: X52

Adsorption treatment of wastewater by electrospun nanofiber membranes: A review

  • 摘要: 静电纺丝纳米纤维膜具有独特的网状结构和相连通的微孔道,作为一种新型吸附材料,具有比表面积大、孔隙率高、易改性、易回收和化学稳定性好等优势,在吸附废水中的污染物方面得到了广泛的应用。本文首先简单介绍了静电纺丝的工作原理,随后,概述了静电纺丝纳米纤维膜作为吸附剂用于水污染处理的最新研究进展,主要包括有机污染物、无机阴离子、重金属离子的吸附去除及在海水淡化方面的应用。同时,讨论了电纺纳米纤维膜对污染物的吸附机制。最后,展望了静电纺丝纳米纤维膜材料在污水处理中存在的挑战和前景。本综述无论从宏观上电纺纳米纤维膜的设计与合成还是微观的吸附去除机制,都可帮助研究者对静电纺丝纳米纤维膜材料有更深刻的理解。

     

  • 图  1  静电纺丝技术的发展历史

    Figure  1.  Development history of electrospinning technology

    图  2  静电纺丝装置示意图

    Figure  2.  Schematic diagram of electrospinning apparatus

    图  3  使用干涉色技术的数码摄像机拍摄的射流照片[31]

    Figure  3.  Photographs of the jet obtained with a digital video camera using the interference color technique[31]

    图  4  静电纺丝纳米纤维膜作为吸附剂在废水处理中的应用

    Figure  4.  Application of electrospun nanofiber membrane as adsorbents in wastewater treatment

    图  5  超声处理制备聚偏氟乙烯(PVDF)/氧化石墨烯(GO)复合膜的过程示意图:(a) 通过静电纺丝技术制备的PVDF纤维膜;(b) 在超声处理过程中PVDF膜在GO水溶液中溶胀;(c) GO迁移到溶胀的PVDF膜的孔中;(d) 停止超声处理后GO片被限制在PVDF膜中[36]

    Figure  5.  Schematic representations showing the preparation process of the composite poly vinylidene fluoride (PVDF)/graphene oxide (GO) membrane with the aid of ultrasonic treatment: (a) PVDF fibrous membrane as prepared through the electrospinning technology; (b) PVDF membrane was swelled in the GO aqueous solution during the ultrasonication process; (c) GO migrated into the pores of the swelled PVDF membrane; (d) Stopping ultrasonic treatment and GO platelets were restricted in the PVDF membrane[36]

    图  6  聚多巴胺(PDA)@二醋酸纤维素(DCA)-COOH膜的合成示意图[38]

    Figure  6.  Synthesis diagram of polydopamine (PDA)@cellulose diacetate (DCA)-COOH membrane[38]

    图  7  Fe3O4/聚丙烯腈(PAN)复合纳米纤维的制备过程

    Figure  7.  Preparation procedures of Fe3O4/polypropylene cyanide (PAN) composite nanofibers

    图  8  用电纺PAN纤维膜制备多孔芳香框架(PAF-45)-聚丙烯(PP)纤维膜的示意图[52]

    Figure  8.  Schematic representation of preparation of porous aromatic framework (PAF-45)-PP fiber membrane from electrospun PAN fiber membrane[52]

    图  9  PAN/端部开口碳纳米管(o-CNTs)复合纳米纤维的合成及对芘的吸附[53]

    Figure  9.  Synthesis of PAN/open-end carbon nanotubes (o-CNTs) composite nanofibers and adsorption of pyrene[53]

    图  10  亲水性介孔碳纳米纤维的制备、电容去离子(CDI)和模拟沙质海水的过滤[64]

    Figure  10.  Schematic illustration of the preparation of hydrophilic mesoporous carbon nanofiber fabric, capacitive deionization (CDI) and the filtration of simulated sandy seawater[64]

    表  1  不同吸附剂对废水中污染物的吸附性能比较

    Table  1.   Comparison of adsorption performance of different adsorbents for pollutants in wastewater

    AdsorbentPollutantAdsorption conditionMaximum adsorption
    capacity/(mg·g−1)
    Regeneration rate
    after 5 cycles
    Ref.
    PVDF/GO membraneMBT=30℃, adsorption time
    (24 h),100 mL MB solution
    (50 mg/L)
    621.1>50%[36]
    PDA-MPs incorporated electrospun fibersMBpH=9.0, T=55℃1 722.1>80%[37]
    PDA@DCA-COOH membraneMB, CRdosage membranes (30 mg)
    T=25℃
    50 mg/L MB, 100 mg/L CR
    69.89, 67.3196%, 80%[38]
    PES nanofibrous membranesMB2257.8881.45%[39]
    PES composite nanofibrous membranesRBpH=5.0, initial concentration of RB is 5 μmol/L95%[40]
    PQAMMOT=45℃, pH=3909.8>85%[41]
    Electrospun CuO-ZnO composite nanofibersCRdosage of fibers (8 mg)
    5 mL CR solution (50 mg/L)
    126.4[42]
    Hierarchical C/NiO-ZnO nanocomposite fibersCRT=30℃, pH=6-7613>98%[43]
    p(NIPAM-co-MAA)/β-CD fibersCVT=55℃, pH=91 253.78>73%[44]
    AN-co-ST electrospun nanofibersBV 14pH=6.2, 50 mL dye solution,
    0.1g fibers
    67.11[45]
    Fe3O4/PAN composite electrospun nanofiber matTCpH=6, T=25℃
    10 mg fibers, 20 mL TC solution
    257.07[46]
    MMT-CA-NFMCIP13.873%[48]
    9%Ni@CNFSDZT=45℃
    SDZ solution (2.5 mg/L)
    103.21[49]
    PAF-45-PP modified electrospun fiber membraneIBPF, CLXN, DEETPPCPs solution (50 mg/L)
    Dosage of membrane
    (0.2 g/L)
    613.50, 429.18, 384.61>98%[52]
    PAN/o-CNTs electrospun nanofibersPyreneDosage of fibers (0.25 mg)
    Pyrene solution (0.2 g/L)
    1.48898%[53]
    MgSi/PAN composite fibersDiquatpH=8197.53[54]
    MWCNTs-LCEFMsPhenolic pollutants[55]
    One-dimension ZrO2 mesoporous fibersFpH=3, 30 mg fibers
    50 mL fluoride solution
    297.70[62]
    CNF-NiOCl0.5 g/L NaCl solution
    Voltage=1.2 V
    6.2>95%[63]
    Hydrophilic carbon nanofiber fabricClVoltage=1.2 V19.34>94%[64]
    CNFZIFClVoltage=1.2 V,
    flow rate=20 mL/min
    50.88[65]
    CNF@Mn2O3ClVoltage=1.2 V27.43>94%[66]
    Graphene hydrogel and ZrO2−doped TiO2 nanofibersClVoltage=1.2 V9.34[67]
    Ultrathin MnOx−modified porous carbon nanofiberCl0.5 g/L NaCl solution,
    flow rate= 10 mL/min,
    voltage=1.2 V
    9.23[68]
    LNPPMPO3- 40.4 g fibers
    100 mL phosphate solution
    pH=7
    165.9[70]
    Chitosan/Al2O3/Fe3O4 composite nanofibrousNO- 350 mg fibers, pH=3, T=20℃
    100 mL nitrate solution
    (20 mg/L)
    160.7[71]
    ABN/TPU-NFMNO- 3Nitrate solution (25 mg/L)14.9[72]
    PAN/TiO2 composite nanofibersPb2+pH=5
    Pb2+ initial concentration is 600 mg/L
    193[74]
    The crosslinked PVA nanofibersPb2+Pb2+ initial concentration is 100 mg/L168.3[75]
    DR-EDTA/PAN membraneCu2+pH=6.5,T=60℃
    Adsorption time is 12 h
    47.6>99%[77]
    MgAl-EDTA-LDH@PAN composite membraneCu2+Cu2+ initial concentration (64 mg/L)
    Dosage of membrane
    (1.50 g/L)
    120.77[13]
    PVC/TNT composite membranesCu2+94%[78]
    PS fibrous mats coated with CS-REC nanospheresCu2+pH=3
    Cu2+ initial concentration (50 mg/L)
    134[79]
    PAN/TiO2 electrospun nanofibersCd2+pH=7
    Cd2+ initial concentration (600 mg/L)
    91[74]
    EDTA-EDA-PAN modified nanofibersCd2+T=25℃32.68>55%[81]
    PAN/MOF-808“hydractivated” composite membraneCd2+pH=4.6±0.2
    Dosage of membrane
    (20 mg)
    30 mL Cd2+ solution
    225.055[82]
    EDTA-EDA-PAN modified nanofibersCr(VI)T=25℃66.2490%[81]
    Nanosized chitosan fibersCr(VI)pH=3131.58[83]
    PAN/PEI/Ppy nanofiber membraneCr(VI)pH=3
    Cr(VI) initial concentration (400 mg/L)
    368>76%[84]
    ZCNsAs(III), As(V)T=40℃28.61, 106.5790%[85]
    Ce-CHT/PVA complex fiberAs(III)18.0[86]
    PAN/SiO2/APTES composite nanofiber membraneTh4+, U6+T=45℃249.4, 193.1>88%[87]
    PAN/CNS nanofibrous membraneLa3+174.580%[88]
    PAA-S HNFsLa3+, Eu3+, Tb3+pH=6
    Initial concentration is
    250 mg/L
    232.6, 268.8, 250.070%[89]
    Notes: PVDF/GO—Poly vinylidene fluoride/graphene oxide; PDA-MPs—Polydopamine microspheres; PES—Polyethersulfone; PQAM—Poly(quaternary ammonium) modified nanofibrous membranes; p(NIPAM-co-MAA)/β-CD—Poly(N-isopropylacrylamide-co-methacrylic acid)/β-cyclodextrin; AN-co-ST—Acrylonitrile-co-styrene; PAN—Polyacrylonitrile; MMT-CA-NFM—Montmorillonite-impregnated cellulose acetate nanofiber membranes; CNF—Carbon nanofiber; PAFs—Porous aromatic frameworks; FM—Fiber membrane; MWCNTs-LCEFMs—Laccase-carrying electrospun fibrous membranes; PEI—Polyethyleneimine; ABN/TPU-NFM—ABN impregnated electrospun thermoplastic polyurethane nanofibrous membrane; DR-EDTA/PAN—Diazoresin-ethylene diamine tetraacetic acid/polyacrylonitrile; CS-REC—Chitosan-rectorite; EDA—Ethylenediamine; Ppy—Polypyrrole; ZCNs—Zirconia embedded in carbon nanowires; CHT—Chitin; APTES—Aminopropyltriethoxysilane; CNS—Carbonaceous nanospheres; PAA-S HNFs—Polyacrylic acid−silica hydrogel nanofibers; MB—Methylene blue; CR—Congo red; MO—Methyl orange; RB—Rhodamine B; CV—Crystal violet; BV 14—Basic violet 14; TC—Tetracycline; CIP—Ciprofloxacin; SDZ—Sulfadiazine; PPCP—Pharmaceuticals and personal care product; IBPF—Ibuprofen; CLXN—Chloroxylenol; DEET—N,N-diethyl-meta-toluamide.
    下载: 导出CSV
  • [1] ROHANI R, YUSOFF I I, KHAIRUL ZAMAN N, et al. Ammonia removal from raw water by using adsorptive membrane filtration process[J]. Separation and Purification Technology,2021,270:118757. doi: 10.1016/j.seppur.2021.118757
    [2] CHEN Tao, WEI Yuanfeng, YANG Weijian, et al. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity[J]. Journal of Hazardous Materials,2021,416:125822. doi: 10.1016/j.jhazmat.2021.125822
    [3] TENG Defang, ZHAO Tienan, XU Yuanqiang, et al. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation[J]. Separation and Purification Technology,2021,263:118393.
    [4] FIORENZA Roberto, DI MAURO Alessandro, CANTARELLA Maria, et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts[J]. Chemical Engineering Journal,2020,379:122309.
    [5] FANG Zhuoyao, LI Zhixian, ZHANG Xiaolin, et al. Enhanced arsenite removal from silicate-containing water by using redox polymer-based Fe(III) oxides nanocomposite[J]. Water Research,2021,189:116673. doi: 10.1016/j.watres.2020.116673
    [6] ZIMMERMANN Karl, WRIGHT Jaycee, BÉRUBÉ Pierre, et al. Biological ion exchange capable of sulphate-based secondary ion exchange during long-term DOC removal[J]. Water Research,2021,196:117036. doi: 10.1016/j.watres.2021.117036
    [7] ZHOU Hanghai, CHEN Chunlei, ZHOU Shaoxiong, et al. Performance and microbial community analysis of a bio-contact oxidation reactor during the treatment of low-COD and high-salinity oilfield produced water[J]. Bioresource Technology,2021,335:125267. doi: 10.1016/j.biortech.2021.125267
    [8] HUSAIN Qayyum, ULBER Roland. Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: A review[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(8): 770-804.
    [9] 钟炜政. 静电纺丝磺化聚醚酮多孔纳米纤维膜及其吸附性能研究[D]. 厦门: 厦门大学, 2019.

    ZHONG Weizheng. Porous SPEK-C nanofiber membrane via electrospining and its adsorption performance[D]. Xiamen: Xiamen University, 2019(in Chinese).
    [10] FENG L, LI S H, ZHAI J, et al. Template based synthesis of aligned polyacrylonitrile nanofibers using a novel extrusion method[J]. Synthetic Metals,2003,135-136:817-818. doi: 10.1016/S0379-6779(02)00909-8
    [11] ICHIMORI Toshimitsu, MIZUMA Kenta, UCHIDA Tetsuya, et al. Morphological diversity and nanofiber networks of poly(p-oxybenzoyl) generated by phase separation during copolymerization[J]. Journal of Applied Polymer Science,2013,128(2):1282-1290. doi: 10.1002/app.38554
    [12] HWANG Wonseok, KIM Bohyun, DANDU Ramesh, et al. Surface induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer[J]. Langmuir,2009,25(21):12682-12686. doi: 10.1021/la9015993
    [13] CHEN Hong, LIN Jianhui, ZHANG Ning, et al. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater[J]. Journal of Hazardous Materials,2018,345:1-9. doi: 10.1016/j.jhazmat.2017.11.002
    [14] PEREAO O K, BODE-ALUKO C, NDAYAMBAJE G, et al. Electrospinning: Polymer nanofibre adsorbent applications for metal ion removal[J]. Journal of Polymers and the Environment,2016,25(4):1175-1189.
    [15] ZELENY John. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric inten-sity at their surfaces[J]. Physical Review,1914,3:69-91.
    [16] ANTON Formhals. Process and apparatus for preparing artificial threads: US, 1,975,504[P]. 1934-10-02.
    [17] BAUMGARTEN P K. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science,1971,36(1):71-79. doi: 10.1016/0021-9797(71)90241-4
    [18] WANG Hengguo, YUAN Shuang, MA Delong, et al. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical perfor-mance[J]. Energy & Environmental Science,2015,8(6):1660-1681.
    [19] STREETER B W, XUE J J, XIA Y N, et al. Electrospun nano-fiber-based patches for the delivery of cardiac progenitor cells[J]. ACS Applied Materials & Interfaces,2019,11(20):18242-18253.
    [20] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications,2015,6(1):6205. doi: 10.1038/ncomms7205
    [21] XUE Jiajia, WU Tong, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [22] WANG Chunya, WU Shuyi, JIAN Muqiang, et al. Silk nano-fibers as high efficient and lightweight air filter[J]. Nano Research,2016,9(9):2590-2597. doi: 10.1007/s12274-016-1145-3
    [23] HUANG Meiling, SI Yang, TANG Xiaomin, et al. Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nano-fibrous membranes[J]. Journal of Materials Chemistry A, 2013, 1(45): 14071.
    [24] SATILMIS Bekir, UYAR Tamer. Superhydrophobic hexamethylene diisocyanate modified hydrolyzed polymers of intrinsic microporosity electrospun ultrafine fibrous membrane for the adsorption of organic compounds and oil/water separation[J]. ACS Applied Nano Materials,2018,1(4):1631-1640. doi: 10.1021/acsanm.8b00115
    [25] WANG Xianfeng, DING Bin, LI Bingyun. Biomimetic electrospun nanofibrous structures for tissue engineering[J]. Materials Today,2013,16(6):229-241. doi: 10.1016/j.mattod.2013.06.005
    [26] WEN Qiang, DI Jiancheng, ZHAO Yong, et al. Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification[J]. Chemical Science,2013,4(12):4378-4382. doi: 10.1039/c3sc51851e
    [27] ZHANG Chuanling, LU Bingrong, CAO Fuhu, et al. Hierarchically structured Co3O4@ carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries[J]. Journal of Materials Che-mistry A,2018,6(27):12962-12968. doi: 10.1039/C8TA03397H
    [28] BOTH ENGEL Adriana, HOLADE Yaovi, TINGRY Sophie, et al. Electrospun carbon fibers: Promising electrode material for abiotic and enzymatic catalysis[J]. The Journal of Physical Chemistry C,2015,119(29):16724-16733. doi: 10.1021/acs.jpcc.5b04352
    [29] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics,1995,35(2):151-160.
    [30] DING Bin, LI Chunrong, MIYAUCHI Yasuhiro, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15): 3685.
    [31] RENEKER D H, YARIN A L. Electrospinning jets and polymer nanofibers[J]. Polymer,2008,49(10):2387-2425. doi: 10.1016/j.polymer.2008.02.002
    [32] 陶彬彬, 何小峰, 何江伟, 等. 印染废水深度处理工艺现状及发展趋势[J]. 天津化工, 2019, 33(6):4-6. doi: 10.3969/j.issn.1008-1267.2019.06.002

    TAO Binbin, HE Xiaofeng, HE Jiangwei, et al. Current status and development trend of advanced treatment technology for printing and dyeing wastewater[J]. Tianjin Chemical Industry,2019,33(6):4-6(in Chinese). doi: 10.3969/j.issn.1008-1267.2019.06.002
    [33] HASSAAN Mohamed, EL NEMR Ahmed. Health and environmental impacts of dyes: Mini review[J]. American Journal of Environmental Science and Engineering,2017,1:64-67.
    [34] CHUNG K T. Azo dyes and human health: A review[J]. Journal of Environmental Science and Health, Part C,2016,34(4):233-261. doi: 10.1080/10590501.2016.1236602
    [35] ANLIKER R. Color chemistry and the environment[J]. Ecotoxicology and Environmental Safety,1977,1:211-237. doi: 10.1016/0147-6513(77)90037-9
    [36] MA Fangfang, ZHANG Di, HUANG Ting, et al. Ultrasonication-assisted deposition of graphene oxide on electrospun poly(vinylidene fluoride) membrane and the adsorption behavior[J]. Chemical Engineering Journal,2019,358:1065-1073. doi: 10.1016/j.cej.2018.10.121
    [37] JIA Shuyue, TANG Dongyan, ZHOU Yuhong, et al. Polydopamine microsphere-incorporated electrospun fibers as novel adsorbents for dual-responsive adsorption of methylene blue[J]. ACS Applied Materials & Interfaces,2020,12(44):49723-49736.
    [38] CHEN Wenjuan, MA Hongzhu, XING Baoshan. Electrospinning of multifunctional cellulose acetate membrane and its adsorption properties for ionic dyes[J]. International Journal of Biological Macromolecules,2020,158:1342-1351. doi: 10.1016/j.ijbiomac.2020.04.249
    [39] XU Yuanting, LIN Wanting, WANG Hui, et al. Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes[J]. Composites Science and Technology,2020,199:108353. doi: 10.1016/j.compscitech.2020.108353
    [40] XU Yuanting, LIN Wanting, WANG Hui, et al. Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes[J]. Composites Science and Technology, 2020, 199: 108353.
    [41] BAO Jianxu, LI Hang, XU Yuanting, et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria[J]. Journal of Materials Science & Technology,2021,78:131-143.
    [42] MALWAL Deepika, GOPINATH P. Efficient adsorption and antibacterial properties of electrospun CuO-ZnO compo-site nanofibers for water remediation[J]. Journal of Hazardous Materials,2017,321:611-621. doi: 10.1016/j.jhazmat.2016.09.050
    [43] CHEN H, WAGEH S, AL-GHAMDI A A, et al. Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red[J]. Journal of Colloid and Interface Science,2019,537:736-745. doi: 10.1016/j.jcis.2018.11.045
    [44] JIA Shuyue, TANG Dong, PENG Jing, et al. β-Cyclodextrin modified electrospinning fibers with good regeneration for efficient temperature-enhanced adsorption of crystal violet[J]. Carbohydrate Polymers,2019,208:486-494. doi: 10.1016/j.carbpol.2018.12.075
    [45] ELKADY M F, EL-AASSAR M R, HASSAN H S. Adsorption profile of basic dye onto novel fabricated carboxylated functionalized Co-polymer nanofibers[J]. Polymers, 2016, 8(5): 177-189.
    [46] LIU Q, ZHONG L B, ZHAO Q B, et al. Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14573-14583.
    [47] KHALIL A M, SCHÄFER A I. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water[J]. Journal of Membrane Science,2021,618:118228. doi: 10.1016/j.memsci.2020.118228
    [48] DAS Sushma, BARUI Ananya, ADAK Asok. Montmorillonite impregnated electrospun cellulose acetate nanofiber sorptive membrane for ciprofloxacin removal from wastewater[J]. Journal of Water Process Engineering,2020,37:101497.
    [49] XIA Simeng, DENG Lin, LIU Xia, et al. Fabrication of magnetic nickel incorporated carbon nanofibers for superfast adsorption of sulfadiazine: Performance and mechanisms exploration[J]. Journal of Hazardous Materials,2022,423:127219.
    [50] AGÜERA A, MARTíNEZ BUENO M J, FERNÁNDEZ-ALBA A R. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters[J]. Environmental Science and Pollution Research,2013,20(6):3496-3515. doi: 10.1007/s11356-013-1586-0
    [51] KEBEDE T G, DUBE S, NINDI M M. Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103330.
    [52] ZHAO Rui, MA Tingting, LI Shuying, et al. Porous aromatic framework modified electrospun fiber membrane as a highly efficient and reusable adsorbent for pharmaceuticals and personal care products removal[J]. ACS Applied Materials & Interfaces,2019,11(18):16662-16673.
    [53] JADHAV A H, MAI X T, OFORI F A, et al. Preparation, characterization, and kinetic study of end opened carbon nano-tubes incorporated polyacrylonitrile electrospun nano-fibers for the adsorption of pyrene from aqueous solution[J]. Chemical Engineering Journal,2015,259:348-356. doi: 10.1016/j.cej.2014.07.127
    [54] LI Y, ZHAO R, CHAO S, et al. A flexible magnesium silicate coated electrospun fiber adsorbent for high-efficiency removal of a toxic cationic herbicide[J]. New Journal of Chemistry,2017,41(24):15601-15611. doi: 10.1039/C7NJ03168H
    [55] DAI Yunrong, YAO Jun, SONG Yonghui, et al. Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes[J]. Environmental Science: Nano,2016,3(4):857-868. doi: 10.1039/C6EN00148C
    [56] RYOSUKE Sato, YAMAGUCHI Gaku, NAGAI Daisuke, et al. Adsorption dynamics of tannin on deacetylated electrospun Konjac glucomannan fabric[J]. Soft Matter,2018,14(14):2712-2723. doi: 10.1039/C8SM00123E
    [57] 查春花, 张胜林, 夏明芳, 等. 饮用水除氟方法及其机理[J]. 净水技术, 2005(6):46-48. doi: 10.3969/j.issn.1009-0177.2005.06.013

    ZHA Chunhua, ZHANG Shenglin, XIA Mingfang, et al. Methods and mechanism of fluoride removal from drinking water[J]. Water Purification Technology,2005(6):46-48(in Chinese). doi: 10.3969/j.issn.1009-0177.2005.06.013
    [58] GAO Ming, WANG Wei, YANG Hongbing, et al. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc-magnesium-aluminum ternary oxide microspheres[J]. Chemical Engineering Journal,2020,380:122459. doi: 10.1016/j.cej.2019.122459
    [59] GAO Ming, WANG Wei, CAO Mengbo, et al. Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination[J]. Environmental Research,2020,188:109735. doi: 10.1016/j.envres.2020.109735
    [60] KAMEDA Tomohito, OBA Jumpei, YOSHIOKA Toshiaki. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies[J]. Journal of Hazardous Materials,2015,300:475-482. doi: 10.1016/j.jhazmat.2015.07.023
    [61] CHEN C L, PARK S W, SU J F, et al. The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats)[J]. Science of the Total Environment,2019,693:133605. doi: 10.1016/j.scitotenv.2019.133605
    [62] YU Zhichao, XU Chonghe, YUAN Kangkang, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal[J]. Journal of Hazardous Materials,2018,346:82-92. doi: 10.1016/j.jhazmat.2017.12.024
    [63] HUSSAIN Taimoor, WANG Yanbo, XIONG Zhubiao, et al. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization[J]. Journal of Colloid and Interface Science,2018,532:343-351. doi: 10.1016/j.jcis.2018.07.129
    [64] GONG Xinyi, ZHANG Su, LUO Wanxia, et al. Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization[J]. ACS Applied Materials & Interfaces,2020,12(44):49586-49595.
    [65] GONG Xinyi, LUO Wanxia, GUO Nannan, et al. Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core-shell structure boosting capacitive deionization performance[J]. Journal of Materials Chemistry A,2021,9(34):18604-18613. doi: 10.1039/D1TA03804D
    [66] LIU Yong, GAO Xin, ZHANG Lu, et al. Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization[J]. Desalination,2020,494:114665.
    [67] YASIN A S, MOHAMED A Y, MOHAMED I M A, et al. Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization[J]. Chemical Engineering Journal,2019,371:166-181. doi: 10.1016/j.cej.2019.04.043
    [68] 王彦博, 聂鹏飞, 刘建允. 超薄MnOx修饰多孔碳纳米纤维及其电容脱盐[J]. 复合材料学报, 2019, 36(3):764-769.

    WANG Yanbo, NIE Pengfei, LIU Jianyun. Ultrathin MnOx-modified porous carbon for capacitive desalination[J]. Acta Materiae Compositae Sinica,2019,36(3):764-769(in Chinese).
    [69] KO Y G, DO T , CHUN Y S, et al. CeO2-covered nanofiber for highly efficient removal of phosphorus from aqueous solution[J]. Journal of Hazardous Materials,2016,307:91-98. doi: 10.1016/j.jhazmat.2015.12.060
    [70] LI Shiyang, HUANG Xiangfeng, LIU Jia, et al. PVA/PEI crosslinked electrospun nanofibers with embedded La(OH)3 nanorod for selective adsorption of high flux low concentration phosphorus[J]. Journal of Hazardous Materials,2020,384:121457. doi: 10.1016/j.jhazmat.2019.121457
    [71] BOZORGPOUR F, RAMANDI H F, JAFARI P, et al. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads[J]. International Journal of Biological Macromolecules,2016,93(PartA):557-565.
    [72] SURIYARAJ S P, PILLAI M M, BHATTACHARYYA A, et al. Scavenging of nitrate ions from water using hybrid Al2O3/bio-TiO2 nanocomposite impregnated thermoplastic polyurethane nanofibrous membrane[J]. RSC Advances,2015,5(84):68420-68429. doi: 10.1039/C5RA09469K
    [73] ZHU Fan, ZHENG Yuming, ZHANG Baogang, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials,2021,401:123608. doi: 10.1016/j.jhazmat.2020.123608
    [74] HADDAD M Y, ALHARBI H F, KARIM M R, et al. Preparation of TiO2 incorporated polyacrylonitrile electrospun nanofibers for adsorption of heavy metal ions[J]. Journal of Polymer Research, 2018, 25(10): 218.
    [75] TIAN Huafeng, YUAN Li, WANG Jianguo, et al. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals[J]. Journal of Hazardous Materials,2019,378:120751.
    [76] BOSCO S M Dal, JIMENEZ R S, VIGNADO C, et al. Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays[J]. Adsorption,2006,12(2):133-146. doi: 10.1007/s10450-006-0375-1
    [77] ZHANG Xinfeng, YANG Shujing, YU Bing, et al. Advanced modified polyacrylonitrile membrane with enhanced adsorption property for heavy metal ions[J]. Scientific Reports,2018,8(1):1260. doi: 10.1038/s41598-018-19597-3
    [78] HEZARJARIBI M, BAKERI G, SILLANPÄÄ M, et al. Novel adsorptive PVC nanofibrous/thiol-functionalized TNT composite UF membranes for effective dynamic removal of heavy metal ions[J]. Journal of Environmental Management,2021,284:111996. doi: 10.1016/j.jenvman.2021.111996
    [79] TU Hu, HUANG Mengtian, YI Yang, et al. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption[J]. Applied Surface Science,2017,426:545-553. doi: 10.1016/j.apsusc.2017.07.159
    [80] 魏筱红, 魏泽义. 镉的毒性及其危害[J]. 公共卫生与预防医学, 2007, 18(4):44-46. doi: 10.3969/j.issn.1006-2483.2007.04.014

    WEI Xiaohong, WEI Zeyi. The toxicity and harm of cadmium[J]. Journal of Public Health and Preventive Medicine,2007,18(4):44-46(in Chinese). doi: 10.3969/j.issn.1006-2483.2007.04.014
    [81] CHAÚQUE E F C, DLAMINI L N, ADELODUN A A, et al. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents[J]. Applied Surface Science,2016,369:19-28. doi: 10.1016/j.apsusc.2016.02.018
    [82] EFOME J E, RANA D, MATSUURA T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18619-18629.
    [83] LI Lei, LI Yanxiang, CAO Lixia, et al. Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning[J]. Carbohydrate Polymers,2015,125:206-213. doi: 10.1016/j.carbpol.2015.02.037
    [84] GUO Ruibin, GUO Wei, PEI Hebing, et al. Polypyrrole deposited electrospun PAN/PEI nanofiber membrane designed for high efficient adsorption of chromium ions (VI) in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,627:127183.
    [85] LUO Jinming, LUO Xubiao, HU Chengzhi, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces,2016,8(29):18912-18921.
    [86] SHARMA Reena, SINGH Nahar, GUPTA Ashish, et al. Electrospun chitosan-polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water[J]. Journal of Materials Chemistry A,2014,2(39):16669-16677. doi: 10.1039/C4TA02363C
    [87] DASTBAZ Abolfazl, KESHTKAR Ali Reza. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning[J]. Applied Surface Science,2014,293:336-344. doi: 10.1016/j.apsusc.2013.12.164
    [88] HUA Weikang, ZHANG Tonghui, DING Siping, et al. A novel cost-effective PAN/CNS nanofibrous membranes with rich carboxyl groups for high efficient adsorption of Lanthanum(III) ions[J]. Separation and Purification Technology,2021,259:118216.
    [89] WANG Min, LI Xiong, HUA Weikang, et al. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance[J]. ACS Applied Materials & Interfaces,2016,8(36):23995-24007.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1744
  • HTML全文浏览量:  756
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-19
  • 录用日期:  2021-09-25
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回