留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展

王喜花 刘涛 黄丽 袁野

王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2023, 40(3): 1300-1310. doi: 10.13801/j.cnki.fhclxb.20220612.001
引用本文: 王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2023, 40(3): 1300-1310. doi: 10.13801/j.cnki.fhclxb.20220612.001
WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1300-1310. doi: 10.13801/j.cnki.fhclxb.20220612.001
Citation: WANG Xihua, LIU Tao, HUANG Li, et al. Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1300-1310. doi: 10.13801/j.cnki.fhclxb.20220612.001

静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20220612.001
详细信息
    通讯作者:

    袁野,博士,教授,博士生导师,研究方向为碳基吸波材料基础研究 E-mail:yuanyewins@hebut.edu.cn

  • 中图分类号: TB34

Research progress for preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrostatic spinning technology

  • 摘要: 随着信息时代的到来,电磁波的泄漏给人类健康带来了严重的危害,因此,高性能电磁防护材料的设计迫在眉睫。静电纺丝技术制备的复合纳米纤维具有质量轻、成本低、比表面积大、易加工和物理化学性能稳定等优点,是近年来高性能电磁屏蔽及吸波材料研究的热点。本文首先介绍了电磁屏蔽及吸波的基本原理,并结合国内外研究现状,将市场上应用广泛的电磁屏蔽及吸波材料系统的分成了金属及金属氧化物、碳材料、导电聚合物和过渡金属碳化物4类,并进行了详细了介绍。同时,综述了各种填料对电磁屏蔽及吸波性能的影响及目前正面临的问题。

     

  • 图  1  (a) 碱刻蚀的聚丙烯腈(APAN)-Ag-硬脂酸(SA)-T复合材料的制备过程;(b) APAN-Ag-SA-2.0的电导率测试;((c), (d)) APAN-Ag-SA-2.0膜的耐腐蚀性测量;(e) APAN-Ag-SA-T在不同波段的总屏蔽效能($ {S}_{{\rm{T}}} $)[31]

    Figure  1.  (a) Preparation process of alkali etched polyacrylonitrile (APAN)-Ag-stearic acid (SA)-T composite; (b) Conductivity test of APAN-Ag-SA-2.0; ((c), (d)) Measurement of corrosion resistance of APAN-Ag-SA-2.0 film; (e) Total shielding efficiency ($ {S}_{{\rm{T}}} $) of APAN-Ag-SA-T in different wavelength bands[31]

    T in APAN-Ag-SA-T—Deposition time; EMI SE—Electromagnetic interference shielding efficiency; SR—Reflection loss; SA—Absorption loss; ST—Total shielding effectiveness; X, K, Ku—Different frequency range

    图  2  (a) 多壁碳纳米管(MWCNT)/纳米纤维(NF)复合膜(BP/NF)的制备过程;(b) BP/NF的横向截面图;(c) 弯曲的BP/NF复合材料;(d) 不同热轧温度下BP/NF的$ {S}_{{\rm{T}}} $[39]

    Figure  2.  (a) Preparation process of multiwalled carbon nanotube (MWCNT)/nanofiber (NF) composite film (BP/NF); (b) Cross section of the BP/NF; (c) Bent BP/NF composite membrane; (d) $ {S}_{{\rm{T}}} $ of BP/NF at different thermal-rolling temperature[39]

    x in BP/NF-x—Thermal-rolling temperature

    图  3  (a) 多孔纳米纤维(Co/CPNFs)制备过程;((b), (c)) Co/CPNFs的形貌SEM图像;(d) 不同厚度下Co/CPNFs的反射损耗RL[53]

    Figure  3.  (a) Preparation process of porous nanofibers (Co/CPNFs); ((b), (c)) SEM images of Co/CPNFs; (d) Reflection loss RL of Co/CPNFs at different thicknesses[53]

    DMF—Dimethyl formamide

    图  4  聚(3,4-亚乙基二氧噻吩)(PEDOT)-聚偏氟乙烯(PVDF)膜的制备流程(a) 和反应原理 (b)[64]

    Figure  4.  Preparation process (a) and reaction principle (b) of poly (3,4-ethylenedioxthiophene)(PEDOT)-polyvinylidene fluoride (PVDF) film[64]

    表  1  屏蔽材料及其屏蔽性能对比

    Table  1.   Shielding materials and their shielding performance comparison

    Composites$ {S}_{{\rm{T}}} $/dBElectrical conductivity/S·cm−1Ref.
    P–W18O49–Ag10030400[30]
    APAN-Ag-SA9057319[31]
    BP/NF23.36.177[39]
    GCF57172[40]
    TiO2/SiO2@PPy@rGO42[63]
    PVDF-PEDOT40[64]
    TaC/C-Fe3C-Fe46.415.4[69]
    PNP@MXene@PDMS28.271.91[70]
    MXene/PVDF-HFP210.0095[73]
    Notes: P—PAN; APAN—alkali etched PAN; GCF—Graphene-carbon nanofibers; PPy—Polypyrrole; PNP—PAN@Ni@dopamine; HFP—Hexafluoropropylene.
    下载: 导出CSV

    表  2  吸波材料及其吸波性能对比

    Table  2.   Absorbing materials and their absorbing performance comparison

    Composites$ {R}_{{\rm{L}}} $/dBEffective absorption bandwidth/GHzRef.
    NMC−53.236.5[32]
    Co0.2Fe2.8O4/C−43.455.85[34]
    Ni/NiO/CNFs−47.93.5[35]
    Co/CPNF−63.6912.92[53]
    SiC/Fe3Si/CNF−41.611.5[43]
    C-SiC−53.77.11[44]
    Fe3C/CNF−245.28[47]
    Nb4N5−49.52.2[48]
    Ni/NiO/SiO2/CNFs−40.15.2[50]
    Ni@C−53.25.6[51]
    Fe3C/N-doped CNF−57.9[52]
    LCNF−41.49.05[54]
    ZnFe2O3/C@PPy−66.345.74[29]
    CPF−49.246.9[66]
    Notes: NMC—Ni/MnO/C; LCNF—Light-weight lignin-based carbon nanofibers; CPF—Cellulose/polyaniline nanofiber.
    下载: 导出CSV
  • [1] HAN Y H, YUAN J, ZHU Y H, et al. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for Enhanced microwave absorption[J]. Journal of Colloid and Interface Science,2021,609:746-754.
    [2] HUANG Z H, CHENG J, ZHANG H Y, et al. High-perfor-mance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band[J]. Journal of Materials Science & Technology,2022,107:155-164. doi: 10.1016/j.jmst.2021.08.005
    [3] ABDALLA I, ELHASSAN A, YU J Y, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption[J]. Carbon,2020,157:703-713. doi: 10.1016/j.carbon.2019.11.004
    [4] FAN D L, LI N X, LI M G, et al. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance[J]. Chemical Engineering Journal,2022,427:131635. doi: 10.1016/j.cej.2021.131635
    [5] YUAN Y, YIN W L, YANG M L, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon,2018,130:59-68. doi: 10.1016/j.carbon.2017.12.122
    [6] GONG P, HAO L, LI Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption[J]. Carbon,2021,185:272-281. doi: 10.1016/j.carbon.2021.09.014
    [7] JEON I, LEE M, LEE S W, et al. Morphology and mechanical properties of polyketone/polycarbonate blends compatibilized with SEBS and polyamide[J]. Macromolecular Research,2019,27(8):827-832. doi: 10.1007/s13233-019-7109-1
    [8] ABDALLA I, SHEN J L, YU J Y, et al. Co3O4/carbon compo-site nanofibrous membrane enabled high-efficiency electromagnetic wave absorption[J]. Scientific Reports,2018,8(1):12402. doi: 10.1038/s41598-018-30871-2
    [9] FAN Q, ZHANG L G, XING H L, et al. Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake[J]. Journal of Materials Science: Materials in Electronics,2020,31(4):3005-3016. doi: 10.1007/s10854-019-02844-2
    [10] HE N, YANG X F, JI R, et al. Polarization and matching modulation of peapod-like Cu/C nanowires to improve microwave absorption[J]. Journal of Alloys and Compounds,2020,822:153633. doi: 10.1016/j.jallcom.2019.153633
    [11] YANG Z N, LUO F, HU Y, et al. Dielectric and microwave absorption properties of TiO2/Al2O3 coatings and improved microwave absorption by FSS incorporation[J]. Journal of Alloys and Compounds,2016,678:527-532. doi: 10.1016/j.jallcom.2016.04.031
    [12] CHEN J B, ZHENG J, HUANG Q Q, et al. Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers[J]. Journal of Materials Science and Technology,2021,94:239-246. doi: 10.1016/j.jmst.2021.03.072
    [13] HUANG Y, YUAN X, CHEN M, et al. Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization[J]. ACS Applied Materials & Interfaces,2018,10(51):44731-44740. doi: 10.1021/acsami.8b16938
    [14] ESTEVEZ D, QIN F X, QUAN L, et al. Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption[J]. Carbon,2018,132:486-494. doi: 10.1016/j.carbon.2018.02.083
    [15] DEERAJ B D S, GEORGE G, DHINESHBABU N R, et al. Electrospun ZrO2@carbon nanofiber mats and their epoxy composites as effective EMI shields in Ku band[J]. Materials Research Bulletin,2021,144:111477. doi: 10.1016/j.materresbull.2021.111477
    [16] NA K H, JANG K P, KIM S W, et al. Fabrication of electrospun Ni0.5Zn0.5Fe2O4 nanofibers using polyvinyl pyrrolidone precursors and electromagnetic wave absorption performance improvement[J]. Polymers (Basel),2021,13(23):4247. doi: 10.3390/polym13234247
    [17] CHEN Q, LI D, LIAO X, et al. Polymer-derived lightweight SiBCN ceramic nanofibers with high microwave absorption performance[J]. ACS Applied Materials & Interfaces,2021,13(29):34889-34898. doi: 10.1021/acsami.1c07912
    [18] 廖子健, 童周禹, 钟国麟, 等. 静电纺丝技术制备纳米纤维吸波材料的研究进展[J]. 化工新型材料, 2021, 49(11):11-15.

    LIAO Zijian, TONG Zhouyu, ZHONG Guolin, et al. Research progress on electrospinning preparation technology for nanofiber absorbing material[J]. New Chemical Materials,2021,49(11):11-15(in Chinese).
    [19] QIN M, ZHANG L, WU H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9: 2105553.
    [20] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials, 2020, 30(47): 2000883.
    [21] ZOU L, ZHANG S, LI X, et al. Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding[J]. Advanced Materials Interfaces,2016,3(5):1500476. doi: 10.1002/admi.201500476
    [22] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7):14-23.

    QIAN Wei, HE Daping, LI Baowen. Recent progress on graphene-based materials for electromagnetic interference shielding applications[J]. Journal of Materials Engi-neering,2020,48(7):14-23(in Chinese).
    [23] CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823. doi: 10.1016/j.coco.2021.100823
    [24] 程金波, 赵海波, 李蒙恩, 等. 碳基吸波材料的研究进展[J]. 中国材料进展, 2019, 38(9):897-905. doi: 10.7502/j.issn.1674-3962.201904003

    CHENG Jinbo, ZHAO Haibo, LI Meng'en, et al. Research progress on carbon-based microwave absorption materials[J]. Materials China,2019,38(9):897-905(in Chinese). doi: 10.7502/j.issn.1674-3962.201904003
    [25] LIU X, HUANG Y, ZHAO X, et al. Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2022,616:347-359. doi: 10.1016/j.jcis.2022.02.062
    [26] WANG Y, DU Y, WU B, et al. Fabrication of PPy nanosphere/rGO composites via a facile self-assembly strategy for durable microwave absorption[J]. Polymers (Basel),2018,10(9):998. doi: 10.3390/polym10090998
    [27] LI J Y, DAI B S, QI Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals[J]. Journal of Alloys and Compounds,2021,877:160132. doi: 10.1016/j.jallcom.2021.160132
    [28] QIAO J, ZHANG X, LIU C, et al. Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption[J]. Carbon,2022,191:525-534. doi: 10.1016/j.carbon.2022.02.024
    [29] LIAO Z, MA M, TONG Z, et al. Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2021,602:602-611. doi: 10.1016/j.jcis.2021.06.042
    [30] WANG H, HE D Y, QIU J, et al. PAN/W18O49/Ag nano-fibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad tempera-ture tolerance and good thermal isolating capacity[J]. Composites Part B: Engineering,2022,236:109793. doi: 10.1016/j.compositesb.2022.109793
    [31] YANG M, JIA X T, HE D Y, et al. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding[J]. ACS Applied Electronic Materials,2021,3(5):2067-2078. doi: 10.1021/acsaelm.1c00076
    [32] LIU Y, ZENG Z H, ZHENG S N, et al. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocompo-site fibers for electromagnetic wave absorption[J]. Compo-sites Part B: Engineering,2022,235:109800. doi: 10.1016/j.compositesb.2022.109800
    [33] CHEN J, ZHENG J, HUANG Q, et al. Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles[J]. ACS Applied Materials & Interfaces,2021,13(30):36182-36189. doi: 10.1021/acsami.1c09430
    [34] WANG Y P, ZHANG Y Y, TAO J N, et al. Co0.2Fe2.8O4/C composite nanofibers with designable 3D hierarchical architecture for high-performance electromagnetic wave absorption[J]. Ceramics International,2021,47(16):23275-23284. doi: 10.1016/j.ceramint.2021.05.040
    [35] SHEN Y Q, ZHANG F, SONG P F, et al. Design and synthesis of magnetic porous carbon nanofibers with excellent microwave absorption[J]. Journal of Alloys and Compounds,2022,903:163971. doi: 10.1016/j.jallcom.2022.163971
    [36] DONG Y, LIN H M, ZHOU D, et al. Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J]. Electrochim Acta,2015,159:116-123. doi: 10.1016/j.electacta.2015.01.152
    [37] LI M H, FAN X M, XU H L, et al. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance[J]. Journal of Materials Science & Technology,2020,59:164-172. doi: 10.1016/j.jmst.2020.04.048
    [38] ABDALLA I, YU J Y, LI Z L, et al. Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption[J]. Composites Part B: Engi-neering,2018,155:397-404. doi: 10.1016/j.compositesb.2018.09.026
    [39] KIM M, KIM S, SEONG Y C, et al. Multiwalled carbon nanotube buckypaper/polyacrylonitrile nanofiber composite membranes for electromagnetic interference shielding[J]. ACS Applied Nano Materials,2021,4(1):729-738. doi: 10.1021/acsanm.0c03040
    [40] ZHANG L K, CHEN Y, LIU Q, et al. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding[J]. Journal of Materials Science & Technology,2022,111:57-65. doi: 10.1016/j.jmst.2021.08.090
    [41] CAO X Y, ZHANG J, CHEN S W, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
    [42] JIN S Y, KIM M H, JEONG Y G, et al. Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers[J]. Materials & Design,2017,124:69-77.
    [43] HUO Y S, ZHAO K, PENG M, et al. Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to promote microwave attenuation ability[J]. Journal of Alloys and Compounds,2022,891:162006. doi: 10.1016/j.jallcom.2021.162006
    [44] ZHAO Y J, ZHANG Y N, YANG C R, et al. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption[J]. Carbon,2021,171:474-483. doi: 10.1016/j.carbon.2020.09.040
    [45] ABDALLA I, SALIM A, ZHU M M, et al. Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency[J]. ACS Applied Materials& Interfaces,2018,10(51):44561-44569. doi: 10.1021/acsami.8b17514
    [46] ELHASSAN A, ABDALLA I, YU J Y, et al. Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,392:123646.
    [47] GUO R, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084-3094. doi: 10.1021/acsami.1c21272
    [48] CUI Y, XU K, ZHU B, et al. Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas[J]. Journal of Alloys and Compounds,2022,907:164453. doi: 10.1016/j.jallcom.2022.164453
    [49] WANG T T, CHENG L Hollow hierarchical TiO2-SnO2-TiO2 composite nanofibers with increased active-sites and charge transfer for enhanced acetone sensing perfor-mance[J]. Sensors and Actuators B: Chemical, 2021, 334: 129644.
    [50] SHEN Y Q, ZHANG F, ZHANG Y C, et al. Ni/NiO/SiO2/C nanofibers with strong wideband microwave absorption and robust hydrophobicity[J]. Applied Surface Science,2022,588:152964. doi: 10.1016/j.apsusc.2022.152964
    [51] WANG C H, ZONG L S, PAN Y X, et al. Preparation and characterization of branch-like heteroatoms-doped Ni@C nanofibers for high-performance microwave absorption with thin thickness[J]. Composites Part B: Engineering,2021,223:109114. doi: 10.1016/j.compositesb.2021.109114
    [52] SUN Y, WANG Y J, MA H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon,2021,178:515-527. doi: 10.1016/j.carbon.2021.03.032
    [53] ZHU Y X, WANG S F, ZHANG Y S, et al. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band[J]. Scientific Reports,2021,11(1):2171. doi: 10.1038/s41598-021-81848-7
    [54] DU B, ZHU H, BAI Y, et al. Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities[J]. International Journal of Biological Macromolecules,2022,199:201-211. doi: 10.1016/j.ijbiomac.2021.12.154
    [55] KANG S, QIAO S Y, CAO Y T, et al. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band[J]. Chemical Engineering Journal,2022,433:133619. doi: 10.1016/j.cej.2021.133619
    [56] LEE H J, JEONG J H, KIM B H Microwave transmission characteristics of carbon nanofiber films with different micrometer-scale thickness[J]. Carbon, 2021, 173: 419-426.
    [57] HAN C, ZHANG M, CAO W Q, et al. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption[J]. Carbon,2021,171:953-962. doi: 10.1016/j.carbon.2020.09.067
    [58] LI Z W, LIN Z J, HAN M S, et al. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications[J]. Chemical Engineering Journal,2021,420:129826. doi: 10.1016/j.cej.2021.129826
    [59] BI Y, MA M, LIU Y, et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework[J]. Journal of Colloid and Interface Science,2021,600:209-218. doi: 10.1016/j.jcis.2021.04.137
    [60] LIU P J, LI L, YAO Z J, et al. Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2016,27(8):7776-7787. doi: 10.1007/s10854-016-4766-0
    [61] ZHANG X, HUANG Y, LIU P Enhanced electromagnetic wave absorption properties of poly(3, 4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent Interactions[J]. Nano-Micro Letters, 2016, 8(2): 131-136.
    [62] KIM H J, KANG G H, KIM S H, et al. Enhancement in electromagnetic wave shielding effectiveness through the formation of carbon nanofiber hybrids on carbon-based nonwoven fabrics[J]. Nanomaterials (Basel),2021,11(11):2910. doi: 10.3390/nano11112910
    [63] HUANG L, LI J, LI Y, et al. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding[J]. Nanoscale,2019,11(17):8616-8625. doi: 10.1039/C9NR02102G
    [64] LEE S, PARK J, KIM M C, et al. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2021,13(21):25428-25437. doi: 10.1021/acsami.1c06230
    [65] SHAHI M, MOGHIMI A, NADERIZADEH B, et al. Electrospun PVA-PANI and PVA-PANI- composite nanofibers[J]. Scientia Iranica,2011,18(6):1327-1331. doi: 10.1016/j.scient.2011.08.013
    [66] ZHANG Z, WANG G, GU W, et al. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications[J]. Journal of Colloid and Interface Science,2022,605:193-203. doi: 10.1016/j.jcis.2021.07.085
    [67] ZHANG Z, LIANG H, CHEN H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature[J]. Inorganic Chemistry,2020,59(3):1848-1852. doi: 10.1021/acs.inorgchem.9b03055
    [68] YANG M, YANG Z J, LV C, et al. Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing[J]. Compo-sites Science and Technology,2022,221:109313. doi: 10.1016/j.compscitech.2022.109313
    [69] GUO H T, ZHENG M H, MA X F, et al. Electrospun TaC/Fe3C–Fe carbon composite fabrics for high efficiency of electromagnetic interference shielding[J]. Composites Communications,2022,31:101130.
    [70] WANG Y T, LI T T, SHIU B C, et al. MXene-decorated nano-fiber film based on layer-by-layer assembly strategy for high-performance electromagnetic interference shielding[J]. Applied Surface Science,2022,574:151552.
    [71] 荣凯, 樊威, 王琪, 等. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(9):10-16. doi: 10.13475/j.fzxb.20210203507

    RONG Kai, FAN Wei, WANG Qi, et al. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles[J]. Journal of Textile Research,2021,42(9):10-16(in Chinese). doi: 10.13475/j.fzxb.20210203507
    [72] YUAN W J, YANG J Z, YIN F C, et al. Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process[J]. Composites Communications,2020,19:90-98. doi: 10.1016/j.coco.2020.03.003
    [73] LIU L X, GUO R, GAO J, et al. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave[J]. Composites Communications,2022,30:101094. doi: 10.1016/j.coco.2022.101094
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1346
  • HTML全文浏览量:  670
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-05-15
  • 录用日期:  2022-05-31
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回