留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能

许进博 董晓珠 孔存辉 赵英娜 王建省 曾雄丰

许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3922-3928. doi: 10.13801/j.cnki.fhclxb.20210903.002
引用本文: 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其 光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3922-3928. doi: 10.13801/j.cnki.fhclxb.20210903.002
XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3922-3928. doi: 10.13801/j.cnki.fhclxb.20210903.002
Citation: XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3922-3928. doi: 10.13801/j.cnki.fhclxb.20210903.002

SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能

doi: 10.13801/j.cnki.fhclxb.20210903.002
基金项目: 河北省教育厅青年基金(QN2017117);河北省自然科学基金钢铁联合基金(E2019209374;E2021209002)
详细信息
    通讯作者:

    王建省,博士,讲师,研究方向为光催化、光电催化、光电化学腐蚀防护 E-mail: wangjiansheng@ncst.edu.cn

  • 中图分类号: O643

Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection

  • 摘要: 由于TiO2存在禁带宽度大、光生载流子分离率低等缺点,限制了其光电化学阴极保护性能。为解决此问题,首先采用水热法制备TiO2纳米阵列,然后通过超声喷雾热解法制备了SrTiO3/TiO2复合薄膜。通过XRD、SEM、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)对样品物相结构、微观形貌、光吸收性能等特征进行表征。最后以304不锈钢(304 SS)为被保护基体,考察了SrTiO3/TiO2复合薄膜的光电化学阴极保护性能。结果表明,通过超声喷雾热解法制备得到的SrTiO3/TiO2复合薄膜,其光吸收范围为415 nm以下,进入可见光区;SrTiO3/TiO2复合薄膜相比于TiO2纳米阵列,具有更好的光吸收特性;光生电子-空穴对分离率提高,且光生电子迁移率提高;在3.5wt%NaCl溶液中,SrTiO3/TiO2复合薄膜使304不锈钢腐蚀电位负移至–0.45 V,负移了近270 mV,而TiO2纳米阵列仅能负移210 mV,性能提升了28.5%。经过四次开光与闭光循环测试,SrTiO3/TiO2复合薄膜性能稳定。

     

  • 图  1  SrTiO3/TiO2复合薄膜制备流程图

    Figure  1.  Flow chart of preparation for SrTiO3/TiO2 composite film

    FTO—Fluorine-doped tin oxide

    图  2  光电化学阴极保护测试装置图

    Figure  2.  Test device diagram for photoelectrochemical cathodic protection

    GW—Ground wire; CE—Counter electrode; RE—Reference electrode; WE—Working electrode; CHI660E—Electrochemical workstation; AM 1.5G—Air mass 1.5 global, 100 W/cm2

    图  3  TiO2纳米阵列和SrTiO3/TiO2复合薄膜的XRD图谱

    Figure  3.  XRD patterns of TiO2 nanoarray and SrTiO3/TiO2 composite film

    图  4  TiO2纳米阵列 (a) 和SrTiO3/TiO2复合薄膜材料表面 (b) 及截面 (c) 的SEM图像

    Figure  4.  SEM images of TiO2 nanoarray (a), SrTiO3/TiO2 composite film with surface (b) and section morphology (c)

    图  5  TiO2纳米阵列和SrTiO3/TiO2复合薄膜紫外-可见漫反射光谱(UV-Vis DRS)图谱及Tauc图

    Figure  5.  UV-visible diffuse reflectance spectrum (UV-Vis DRS) and Tauc of TiO2 nanoarray and SrTiO3/TiO2 composite film

    图  6  TiO2纳米阵列和SrTiO3/TiO2复合薄膜荧光光谱图谱

    Figure  6.  Fluorescence spectra of TiO2 nanoarray and SrTiO3/TiO2 composite film

    图  7  TiO2纳米阵列和SrTiO3/TiO2复合薄膜电化学阻抗谱

    Figure  7.  Electrochemical impedance test results of TiO2 nanoarray and SrTiO3/TiO2 composite film

    图  8  TiO2纳米阵列和SrTiO3/TiO2复合薄膜开路电位-时间曲线

    Figure  8.  Open circuit potential-time curves of TiO2 nanoarray and SrTiO3/TiO2 composite film

    E304 SS—Potential of 304 stainless steel

    图  9  TiO2纳米阵列和SrTiO3/TiO2复合薄膜的光电流密度-时间曲线

    Figure  9.  Photocurrent density-time curves of TiO2 nanoarray and SrTiO3/TiO2 composite film

    图  10  TiO2纳米阵列和SrTiO3/TiO2复合薄膜塔菲尔极化曲线

    Figure  10.  Tafel polarization curves of TiO2 nanoarray and SrTiO3/TiO2 composite film

    304 SS—304 Stainless steel

    图  11  SrTiO3/TiO2复合薄膜光电化学阴极保护机制

    Figure  11.  Photoelectrochemical cathodic protection mechanism of SrTiO3/TiO2 composite film

    CB—Conduction band; VB—Valence band

  • [1] 侯世忠. 阴极保护技术的研究与应用[J]. 全面腐蚀控制, 2018, 32(10):39-44, 65.

    HOU Shizhong. Research and application of cathodic protection technology[J]. Total Corrosion Control,2018,32(10):39-44, 65(in Chinese).
    [2] 施云芬, 孙树森, 张世龙, 等. 牺牲阳极和外加电流联合保护法在长输管道中的应用研究[J]. 表面技术, 2019, 48(8):286-295.

    SHI Yunfen, SUN Shusen, ZHANG Shilong, et al. Application research of sacrificial anode and impressed current combined protection method in long-distance pipeline[J]. Surface Technology,2019,48(8):286-295(in Chinese).
    [3] YUAN J, TSUJIKAWA S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates[J]. Journal of the Electrochemical Society,1995,142(10):3444-3450. doi: 10.1149/1.2050002
    [4] ZHANG W, GUO H, SUN H, et al. Photogenerated cathodic protection and invalidation of silane/TiO2 hybrid coatings[J]. Journal of Coatings Technology and Research,2017,14(2):417-424. doi: 10.1007/s11998-016-9859-4
    [5] YANG Y Y, ZHANG W, XU Y, et al. Preparation of PbS and CdS cosensitized graphene/TiO2 nanosheets for photoelectrochemical protection of 304 stainless steels[J]. Applied Surface Science,2018,452:58-66. doi: 10.1016/j.apsusc.2018.05.016
    [6] ZUO J, WU H, CHEN A J, et al. Shape-dependent photogenerated cathodic protection by hierarchically nanostructured TiO2 films[J]. Applied Surface Science,2018,462:142-148. doi: 10.1016/j.apsusc.2018.07.143
    [7] LI H, SONG W, CUI X, et al. Preparation of SnIn4S8/TiO2 nanotube photoanode and its photocathodic protection for Q235 carbon steel under visible light[J]. Nanoscale Research Letters,2021,16(1):13.
    [8] NING F Y, SHAO M F, XU S M, et al. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting[J]. Energy & Environmental Science,2016,9(8):2633-2643.
    [9] JIAO Z B, SHANG M D, LIU J M, et al. The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”[J]. Nano Energy,2017,31:96-104. doi: 10.1016/j.nanoen.2016.11.026
    [10] CHENG X, DONG G J, ZHANG Y J, et al. Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting[J]. Applied Catalysis B: Environmental,2020,267(C):118723.
    [11] MOHAMAD M M, GHAYEB Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing[J]. Jour-nal of Alloys and Compounds,2015,637:393-400. doi: 10.1016/j.jallcom.2015.02.137
    [12] LI Z Z, XIN Y M, WU W L, et al. Phosphorus cation doping: A new strategy for boosting photoelectrochemical perfor-mance on TiO2 nanotube photonic crystals[J]. ACS Applied Materials & Interfaces,2016,8(45):30972-30979.
    [13] 左士祥, 曹晓曼, 吴红叶, 等. g-C3N4量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8):2725-2733.

    ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,38(8):2725-2733(in Chinese).
    [14] SUN M M, CHEN Z Y, BU Y Y. Enhanced photoelectroche-mical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light[J]. Surface & Coatings Technology,2015,266:79-87.
    [15] JING J P, CHEN Z Y, BU Y Y, et al. Photoelectrochemical cathodic protection induced from nanoflower-structured WO3 sensitized with CdS nanoparticles[J]. Journal of the Electrochemical Society,2016,163(14):928-936. doi: 10.1149/2.0141702jes
    [16] JING J P, CHEN Z Y, BU Y Y. Visible light induced photoelectrochemical cathodic protection for 304 SS by In2S3-sensitized ZnO nanorod array[J]. International Journal of Electrochemical Science,2015,10(10):8783-8796.
    [17] TATSUMA T, SAITOH S, OHKO Y. Photoelectrochemical anticorrosion effect of SrTiO3 for carbon steel[J]. Electrochemical and Solid-State Letters,2002,5(2):9-12. doi: 10.1149/1.1432242
    [18] 补钰煜, 李卫兵, 于建强, 等. 纳米钛酸锶薄膜电极的组装及其对不锈钢的光电化学缓蚀性能[J]. 物理化学学报, 2011, 27(10):2393-2399. doi: 10.3866/PKU.WHXB20110926

    BU Yuyu, LI Weibing, YU Jianqiang, et al. Assembly of nano-strontium titanate thin film electrode and its photoelectrochemical corrosion inhibition performance for stainless steel[J]. Acta Physico-Chimica Sinica,2011,27(10):2393-2399(in Chinese). doi: 10.3866/PKU.WHXB20110926
    [19] 谭欣, 石婷, 于涛, 等. 高活性异质结TiO2/SrTiO3纳米管阵列及其光电催化性能[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11):955-961.

    TAN Xin, SHI Ting, YU Tao, et al. Highly active heterojunction TiO2/SrTiO3 nanotube array and its photoelectric catalytic performance[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),2014,47(11):955-961(in Chinese).
    [20] ZHANG Y, BU Y Y, YU J Q, et al. Highly efficient photoelectrochemical performance of SrTiO3/TiO2 heterojunction nanotube array thin film[J]. Journal of Nanoparticle Research,2013,15(6):1-8.
    [21] 董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1173-1179.

    DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation and photocatalytic performance of β-FeOOH/TiO2 composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179(in Chinese).
    [22] 黄永昌. 电化学保护技术及其应用[J]. 腐蚀与防护, 2000, 21(4):191-193, 183. doi: 10.3969/j.issn.1005-748X.2000.04.017

    HUANG Yongchang. Electrochemical protection technology and its application[J]. Corrosion and Protection,2000, 21(4):191-193, 183(in Chinese). doi: 10.3969/j.issn.1005-748X.2000.04.017
    [23] BU Y Y, CHEN Z Y, AO J P, et al. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3/TiO2 composite[J]. Journal of Alloys & Compounds,2018,731:1214-1224.
    [24] YUE X Y, ZHANG J Y, YAN F P, et al. A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (I) facets for enhancing photocatalytic degradation activity[J]. Applied Surface Science,2014,319:68-74. doi: 10.1016/j.apsusc.2014.07.100
    [25] HUANG J R, TAN X, YU T, et al. Hetero-structured TiO2/SrTiO3 nanotube array film with highly reactive anatase TiO2 {001} facets[J]. Journal of Materials Chemistry A,2014,2(26):9975-9981. doi: 10.1039/C4TA00948G
  • 加载中
图(11)
计量
  • 文章访问数:  1180
  • HTML全文浏览量:  612
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-08-11
  • 录用日期:  2021-08-14
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回