留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬索桥轻质复材人行道板的研制及其受力性能

韩娟 方海 吴鹏

韩娟, 方海, 吴鹏. 悬索桥轻质复材人行道板的研制及其受力性能[J]. 复合材料学报, 2022, 39(11): 5355-5366. doi: 10.13801/j.cnki.fhclxb.20220804.001
引用本文: 韩娟, 方海, 吴鹏. 悬索桥轻质复材人行道板的研制及其受力性能[J]. 复合材料学报, 2022, 39(11): 5355-5366. doi: 10.13801/j.cnki.fhclxb.20220804.001
HAN Juan, FANG Hai, WU Peng. Development of light-weight composite pavement slab in suspension bridge and its mechanical properties[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5355-5366. doi: 10.13801/j.cnki.fhclxb.20220804.001
Citation: HAN Juan, FANG Hai, WU Peng. Development of light-weight composite pavement slab in suspension bridge and its mechanical properties[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5355-5366. doi: 10.13801/j.cnki.fhclxb.20220804.001

悬索桥轻质复材人行道板的研制及其受力性能

doi: 10.13801/j.cnki.fhclxb.20220804.001
基金项目: 国家自然科学基金面上项目(52078248);江苏省杰出青年基金(BK20190034)
详细信息
    通讯作者:

    方海,博士,教授,博士生导师,研究方向为复合材料结构  E-mail: fanghainjut@njtech.edu.cn

  • 中图分类号: U443.34

Development of light-weight composite pavement slab in suspension bridge and its mechanical properties

  • 摘要: 为满足大跨悬索桥主梁减重的需求,研制了新型轻质复材人行道板,并将其成功应用于武汉杨泗港长江大桥。采用试验、理论和有限元的方法研究了轻质复材人行道板的受力性能并设计了快速拼装工艺。采用配重砝码块进行重力分级均布加载模拟人群荷载下复材人行道板的受力响应,在规范人群荷载下,复材板跨中挠度仅为挠度限值的 9.14%;对3种跨度的复材人行道板进行三点弯曲试验研究,3 种试件的破坏形式均为面板屈曲破坏,跨度最大的试件YSG-TB-960的极限承载力最小为14.79 kN;复材人行道板剪切试验的极限承载力为28.68 kN。采用ANSYS/Multiphysics软件建立了复材人行道板的三维模型并进行有限元分析,模拟复材人行道板在人群荷载和跨中集中荷载下的响应,有限元计算结果与试验值吻合较好。采用一阶剪切变形理论计算受弯复材人行道板在极限承载力时下面板跨中挠度,理论结果和试验结果最小误差仅为–7.73%,总体吻合良好。对研制的复材人行道板进行了性能评估,轻质复材人行道板的最小安全系数为10.42,均满足设计要求。

     

  • 图  1  杨泗港长江大桥

    Figure  1.  Yangsigang Yangtze River Bridge in Wuhan

    图  2  复材人行道板的研制

    q—Crowd load

    Figure  2.  Development of composite pavement slab

    图  3  复材人行道板制备流程

    Figure  3.  Fabrication process of composite pavement slab

    图  4  均布荷载试验加载装置(单位:mm)

    Figure  4.  Load device for uniform load test (Unit: mm)

    图  5  复材人行道板荷载-位移曲线

    Figure  5.  Load-deflection behavior of composite pavement slab

    图  6  复材人行道板均布荷载数值分析结果

    MX—Maximum value

    Figure  6.  Numerical analysis results of uniform load for composite pavement slab

    图  7  试验加载装置

    Figure  7.  Test loading device

    图  8  复材人行道板YSG-TB-800的受弯破坏模式

    Figure  8.  Failure modes of composite pavement slab in bending test for YSG-TB-800

    图  9  复材人行道板荷载-位移关系曲线

    Figure  9.  Load-displacement behavior of composite pavement slab

    图  10  YSG-TB-800跨中高度方向纵向应变分布

    Pu—Ultimate load

    Figure  10.  Longitudinal strain distribution in mid-span height direction of YSG-TB-800

    图  11  复材人行道板荷载-应变及位置-应变曲线

    P—Load

    Figure  11.  Load-strain and strain-location behavior of composite pavement slab

    图  12  YSG-TB-800试件受弯数值分析结果

    MN—Minimum value

    Figure  12.  Numerical analysis results of bending load for specimen YSG-TB-800

    图  13  YSG-TB-800 (厚度t=1.2 mm)受弯数值分析结果

    Figure  13.  Numerical analysis results of bending load for specimen YSG-TB-800 (Thickness t=1.2 mm)

    图  14  YSG-TB-800 (t=3.6 mm)受弯数值分析结果

    Figure  14.  Numerical analysis results of bending load for specimen YSG-TB-800 (t=3.6 mm)

    图  15  复材人行道板剪切试验破坏模式

    Figure  15.  Failure mode of composite pavement slab in shear test

    图  16  YSG-TB-210试件受剪数值分析结果

    Figure  16.  Numerical analysis results of specimen YSG-TB-210

    图  17  复材人行道板受剪试件的荷载-位移曲线

    Figure  17.  Load-displacement curves of composite pavement slab

    图  18  复材桥人行道板在杨泗港长江大桥上的应用

    Figure  18.  Application of composite pavement slabs in Yangsigang Yangtze River Bridge

    表  1  复合材料面板片材基本力学性能参数

    Table  1.   Basic mechanical performance of composite specimens

    Test nameTest methodStrength
    /MPa
    Varied coefficient/%Modulus
    /MPa
    Varied coefficient/%
    TensileASTM D3039[15]269.783.5118.513.13
    CompressiveASTM D3518[16]78.814.066.133.56
    ShearASTM D3410[17]178.313.3218.212.57
    下载: 导出CSV

    表  2  聚氨酯泡沫基本力学性能参数

    Table  2.   Basic mechanical performance of polyurethane foam

    Test nameTest methodStrength
    /MPa
    Varied coefficient/%Modulus
    /MPa
    Varied coefficient/%
    TensileASTM C297[18]0.252.135.412.98
    CompressiveASTM C365[19]0.233.056.223.14
    ShearASTM C273[20]0.153.872.273.09
    下载: 导出CSV

    表  3  复材人行道板均布荷载加载制度及有限元与试验跨中挠度对比

    Table  3.   Uniform load system and span deflection comparison between numerical method and test for composite pavement slab

    Cumulative loading/
    (kN·m−2)
    Quantity of
    mass at one time/
    block
    Single
    loading/
    (kN·m−2)
    Mass specifications/
    (kg/block)
    Total number of loadingΔex/mmΔfem/mmError (ΔfemΔex)/
    Δex/%
    0.755220.7553.510.0410.0459.27
    1.509220.7553.520.0810.09010.62
    2.264220.7553.530.1220.13410.16
    3.018220.7553.540.1630.1799.88
    3.773220.7553.550.2030.22410.30
    4.528220.7553.560.2440.26910.12
    5.282220.7553.570.2830.31310.78
    6.037220.7553.580.3230.35810.93
    6.791220.7553.590.3640.40310.74
    7.546220.7553.5100.4040.44810.87
    8.301220.7553.5110.4450.49310.72
    9.055220.7553.5120.4860.53710.58
    9.594220.5392.5130.5180.5699.92
    10.133220.5392.5140.5450.60110.35
    10.672220.5392.5150.5760.6339.97
    11.211220.5392.5160.6070.6659.62
    Notes: Δfem—Span deflection of composite pavement slab with numerical method; Δex—Span deflection of composite pavement slab with test method.
    下载: 导出CSV

    表  4  复材人行道板受弯试件参数统计

    Table  4.   Details of tested composite pavement slab bending specimens

    SpecimenDimension parameter of specimen
    Width/
    mm
    Height/
    mm
    Span/
    mm
    Total length/
    mm
    YSG-TB-50037035500700
    YSG-TB-8008001000
    YSG-TB-9609601160
    下载: 导出CSV

    表  5  复材人行道板三点弯曲试验结果

    Table  5.   Three point flexual test results of composite pavement slab

    SpecimenUltimate bearing
    capacity/kN
    Ultimate deflection/
    mm
    Failure
    mode
    YSG-TB-50028.3413.09
    YSG-TB-80016.9425.10Buckling of
    upper sheet
    YSG-TB-96014.7937.86
    下载: 导出CSV

    表  6  复材人行道板跨中挠度结果对比

    Table  6.   Comparison of results on mid-span deflection of composite pacememt slab

    SpecimenTheoretical
    value/mm
    Test value
    /
    mm
    Error/%
    YSG-TB-50011.1213.09−15.05
    YSG-TB-80023.1625.10−7.73
    YSG-TB-96033.7537.86−10.86
    Note: Error=(Theoretical value − Test value)/Test value.
    下载: 导出CSV

    表  7  复材人行道板跨中挠度结果对比(荷载P=10 kN)

    Table  7.   Comparison of mid-span deflection of composite pavement slab (Load P=10 kN)

    SpecimenNumerical value/mmTest value/mmError/%
    YSG-TB-5004.875.25−7.24
    YSG-TB-80012.6713.71−7.59
    YSG-TB-96023.7524.08−1.37
    Note: Error = (Numerical value – Test value)/Test value.
    下载: 导出CSV

    表  8  人行道板试件性能评估结果

    Table  8.   Results of performance evaluation of composite pavement slab

    SpecimenFtestFshear/kNSafety factorPerformance evaluation
    YSG-TB-21014.340.1689.63Meet
    YSG-TB-50014.170.3738.30Meet
    YSG-TB-8008.470.5914.36Meet
    YSG-TB-9607.400.7110.42Meet
    Notes: Ftest—Ultimate shear force of test; Fshear—Equivalent maximum shear value.
    下载: 导出CSV
  • [1] 曾志斌. 铁路混凝土梁人行道步行板的技术要求和结构选型[J]. 铁道建设, 2019, 59(8):42-44.

    ZENG Zhibin. Technical requirements and structural selection of sidewalk walking board of railway concrete girder[J]. Railway Engineering,2019,59(8):42-44(in Chinese).
    [2] 王伟. 浸锌钢结构人行道板优化设计[J]. 科技创新与应用, 2018, 20:87-88. doi: 10.3969/j.issn.2095-2945.2018.29.039

    WANG Wei. Optimum design of galvanized steel structure pavement slab[J]. Technology Innovation and Application,2018,20:87-88(in Chinese). doi: 10.3969/j.issn.2095-2945.2018.29.039
    [3] 杨易琳, 牛潮. 铝合金踏板加工设备的设计探讨[J]. 有色冶金设计与研究, 2010, 5:34-36. doi: 10.3969/j.issn.1004-4345.2010.02.013

    YANG Yilin, NIU Chao. A study on engineering of alumi-num alloy floor sheet machining equipment[J]. Nonferrous Metals Engineering & Research,2010,5:34-36(in Chinese). doi: 10.3969/j.issn.1004-4345.2010.02.013
    [4] 冯鹏, 田野, 覃兆平. 纤维增强复合材料拉挤型材桁架桥静动力性能研究[J]. 工业建筑, 2013, 43(6):36-41.

    FENG Peng, TIAN Ye, QIN Zhaoping. Static and dynamic behavior of a truss bridge made of FRP pultruded profiles[J]. Industrial Construction,2013,43(6):36-41(in Chinese).
    [5] 韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版), 2020, 42(5):543-554.

    HAN Juan, LIU Weiqing, FANG Hai. Application of fiber-reinforced resin matrix composites in the civil infrastructure field[J]. Journal of Nanjing Tech University (Natural Science Edition),2020,42(5):543-554(in Chinese).
    [6] FANG H, BAI Y, LIU W Q, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B: Engineering,2019,164:129-143. doi: 10.1016/j.compositesb.2018.11.047
    [7] 冯鹏, 叶列平. 外部纤维缠绕增强FRP桥面板受力性能试验研究[J]. 土木工程学报, 2009, 42(9):61-67. doi: 10.3321/j.issn:1000-131X.2009.09.009

    FENG Peng, YE Lieping. Experimental study on exterior filament-wound strengthening fiber-reinforced polymer bridge decks[J]. China Civil Engineering Journal,2009,42(9):61-67(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.09.009
    [8] 史慧媛, 刘伟庆, 方海, 等. GFRP复合材料-轻木夹芯梁弯曲疲劳性能试验[J]. 复合材料学报, 2018, 35(5):1114-1122. doi: 10.13801/j.cnki.fhclxb.20170707.001

    SHI Huiyuan, LIU Weiqing, FANG Hai, et al. Experimental research on flexural fatigue behavior of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica,2018,35(5):1114-1122(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170707.001
    [9] KELLER T, ROTHE J, DE CASTRO J, et al. GFRP-balsa sandwich bridge deck-concept, design and experimental validation[J]. Journal of Composites for Construction,2014,18(2):1-10.
    [10] 柴生波, 王秀兰, 肖汝诚. 悬索桥主缆纵桥向约束刚度研究[J]. 中国公路学报, 2015, 28(8):59-66. doi: 10.3969/j.issn.1001-7372.2015.08.008

    CHAI Shengbo, WANG Xiulan, XIAO Rucheng. Study on longitudinal restraint stiffness of main cable in suspension bridge[J]. China Journal of Highway Transport,2015,28(8):59-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.008
    [11] CLEMENTE P, NICOLOSI G, RAITHEL A. Preliminary design of very long-span suspension cable bridge[J]. Engineering Structures,2000,22(12):1699-1706. doi: 10.1016/S0141-0296(99)00112-1
    [12] 刘伟庆, 方海, 万里. 格构增强型复合材料夹层结构: 中国专利, ZL 200710021396.8[P]. 2007-04-10.

    LIU Weiqing, FANG Hai, WAN Li. Lattice reinforced composite sandwich structure: Chinese patent, ZL 200710021396.8[P]. 2007-04-10(in Chinese).
    [13] 邓晓光, 刘沐宇, 史晶, 等. 大跨径双层悬索桥钢桁梁整体焊接节点疲劳分析与试验[J]. 中国公路学报, 2017, 30(3):96-103. doi: 10.3969/j.issn.1001-7372.2017.03.010

    DENG Xiaoguang, LIU Muyu, SHI Jing, et al. Fatigue analysis and test on integral welded joint at steel truss girder of long-span double deck suspension bridge[J]. China Jour-nal of Highway Transport,2017,30(3):96-103(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.010
    [14] 中华人民共和国行业标准. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社股份有限公司, 2015.

    Industry Standard of the People’s Republic of China. General specifications for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: China Communications Press CO., LTD., 2015(in Chinese).
    [15] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM International, 2017.
    [16] ASTM. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518[S]. West Conshohocken: ASTM International, 2018.
    [17] ASTM. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D3410[S]. West Conshohocken: ASTM International, 2016.
    [18] ASTM. Standard test method for flatwise tensile strength of sandwich constructions: ASTM C297[S]. West Conshohocken: ASTM International, 2015.
    [19] ASTM. Standard test method for shear properties of sandwich core materials: ASTM C273[S]. West Conshohocken: ASTM International, 2020.
    [20] ASTM. Standard test method for flatwise compressive properties of sandwich cores: ASTM C365[S]. West Conshohocken: ASTM International, 2022.
    [21] 中华人民共和国行业标准. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018[S]. 北京: 人民交通出版社股份有限公司, 2018.

    Industry Standard of the People’s Republic of China. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362—2018[S]. Beijing: China Communications Press CO., LTD., 2018(in Chinese).
    [22] ASTM. Standard test method for flexural properties of sandwich constructions: ASTM C393[S]. West Conshohocken: ASTM International, 2020.
    [23] WANG L, LIU W Q, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2014,67:270-279. doi: 10.1016/j.compositesb.2014.07.003
  • 加载中
图(18) / 表(8)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  272
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-05
  • 录用日期:  2022-07-16
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回