留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沥青增塑熔纺聚丙烯腈基碳纤维前驱体纤维的制备与性能

陈建永 韩娜 吴潮 孙志恒 吴宇通 孙忠顺 王乐军 张兴祥

陈建永, 韩娜, 吴潮, 等. 沥青增塑熔纺聚丙烯腈基碳纤维前驱体纤维的制备与性能[J]. 复合材料学报, 2022, 39(10): 4540-4550. doi: 10.13801/j.cnki.fhclxb.20211119.002
引用本文: 陈建永, 韩娜, 吴潮, 等. 沥青增塑熔纺聚丙烯腈基碳纤维前驱体纤维的制备与性能[J]. 复合材料学报, 2022, 39(10): 4540-4550. doi: 10.13801/j.cnki.fhclxb.20211119.002
CHEN Jianyong, HAN Na, WU Chao, et al. Preparation and properties of pitch plasticized melt spinning polyacrylonitrile-based carbon fibers precursor[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4540-4550. doi: 10.13801/j.cnki.fhclxb.20211119.002
Citation: CHEN Jianyong, HAN Na, WU Chao, et al. Preparation and properties of pitch plasticized melt spinning polyacrylonitrile-based carbon fibers precursor[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4540-4550. doi: 10.13801/j.cnki.fhclxb.20211119.002

沥青增塑熔纺聚丙烯腈基碳纤维前驱体纤维的制备与性能

doi: 10.13801/j.cnki.fhclxb.20211119.002
基金项目: 天津市科技重大专项(18ZXJMTG00110);天津工业大学纤维培育基金(TGF-21-A4)
详细信息
    通讯作者:

    韩娜,博士,教授,博士生导师,研究方向为高性能纤维的结构设计与应用 E-mail: hanna@tiangong.edu.cn

    张兴祥,博士,教授,博士生导师,研究方向为高性能纤维材料的制备与应用 E-mail: zhangxingxiang@tiangong.edu.cn

  • 中图分类号: TQ342+.74

Preparation and properties of pitch plasticized melt spinning polyacrylonitrile-based carbon fibers precursor

  • 摘要: 为了降低聚丙烯腈(PAN)的熔点和提升熔纺PAN纤维的性能,本文以各向同性萘沥青(INP)和煤焦油沥青(ICP)作为增塑剂,比较了二者对85∶14∶1 摩尔比的聚(丙烯腈-丙烯酸甲酯-4-丙烯酰氧基二苯甲酮)三元共聚物(P(AN-MA-ABP))的增塑效果。优选1wt%的INP与P(AN-MA-ABP)充分混合、熔融纺丝、牵伸制备了1wt%INP/P(AN-MA-ABP)共聚物纤维,并研究了紫外(UV)辐照时间对1wt%INP/P(AN-MA-ABP)共聚物纤维的影响。结果表明:相比于稠环结构的ICP,长链含硫杂环结构的INP具有良好的增塑效果。制备的1wt%INP/P(AN-MA-ABP)共聚物纤维直径约52 μm,拉伸强度约250 MPa,表面光滑,结构致密。UV辐照时间从0 min增加到60 min,纤维表面氧含量由17.3%提高到26.0%。氮气条件下,环化起始温度由303.8℃降到292.4℃,环化峰值温度由318.0℃降到308.8℃。空气条件下,环化起始温度由299.9℃降到295.0℃,环化峰值温度由316.4℃降到312.6℃。UV辐照20 min,氮气条件下800℃时纤维的碳收率由41.0%提高到43.4%。UV辐照降低了1wt%INP/P(AN-MA-ABP)共聚物纤维的环化起始温度、峰值温度、焓值,提高了碳收率,有利于后续热处理。

     

  • 图  1  聚(丙烯腈-丙烯酸甲酯-4-丙烯酰氧基二苯甲酮)(P(AN-MA-ABP))三元共聚物的FTIR图谱

    Figure  1.  FTIR spectrum of poly(acrylonitrile-methyl acrylate-4-acryloxy dibenzophenone) terpolymer (P(AN-MA-ABP)) terpolymer

    图  2  P(AN-MA-ABP)三元共聚物的1H NMR图谱

    Figure  2.  1H NMR spectrum of P(AN-MA-ABP) terpolymer

    AN—Acrylonitrile; MA—Methyl acrylate; ABP—Acryloyl benzophenone

    图  3  INP和ICP的FTIR图谱

    Figure  3.  FTIR spectra of INP and ICP

    图  4  INP/P(AN-MA-ABP)和ICP/P(AN-MA-ABP)熔体流动指数 (MFI) 曲线

    Figure  4.  Melt flow index (MFI) curves of INP/P(AN-MA-ABP) and ICP/P(AN-MA-ABP) melt

    图  5  INP/P(AN-MA-ABP)和ICP/P(AN-MA-ABP)熔体黏度随剪切速率的变化曲线

    Figure  5.  Viscosity curves of INP/P(AN-MA-ABP) andICP/P(AN-MA-ABP) melt with shear rate

    图  6  1wt%INP/P(AN-MA-ABP)三元共聚物纤维的EDS图:(a) 表面的元素含量;(b) 表面的元素分布

    Figure  6.  EDS diagram of 1wt%INP/P(AN-MA-ABP) terpolymer fibers: (a) Surface element content; (b) Surface element distribution

    图  7  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的凝胶含量

    Figure  7.  Gel contents of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV for different time

    图  8  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的FTIR图谱

    Figure  8.  FTIR spectra of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV for different time

    图  9  空气气氛下UV辐照PAN的环化机制

    Figure  9.  Mechanism of PAN cyclization under UV irradiation in air atmosphere

    图  10  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的DSC曲线:(a)氮气;(b)空气

    Figure  10.  DSC curves of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV for different time: (a) N2; (b) Air

    图  11  氮气条件下UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的TGA和DTG曲线

    Figure  11.  TGA and DTG curves of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV at different time under nitrogen condition

    图  12  UV辐照1wt%INP/P(AN-MA-ABP)三元共聚物纤维的SEM图像

    Figure  12.  SEM images of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV

    表  1  样品的组成编号

    Table  1.   Composition number of the samples

    SampleP(AN-MA-ABP)/wt%INP/
    wt%
    ICP/
    wt%
    0.5wt%INP/P(AN-MA-ABP)99.50.5
    1wt%INP/P(AN-MA-ABP)99.01.0
    3wt%INP/P(AN-MA-ABP)97.03.0
    5wt%ICP/P(AN-MA-ABP)95.05.0
    Notes: INP—Isotropic naphthalene pitch; ICP—Isotropic coal tar pitch; P(AN-MA-ABP)—Poly(acrylonitrile-methyl acrylate-4-acryloxy dibenzophenone) terpolymer.
    下载: 导出CSV

    表  2  P(AN-MA-ABP)三元共聚物的组成与性质

    Table  2.   Composition and properties of P(AN-MA-ABP) terpolymers

    Feed ratio
    /mole percent
    Composition
    /mole percent
    Mn/(g·mol−1)Mw/(g·mol−1)Mw/MnMelt processible
    85∶14∶184.3∶14.3∶1.425000520002.1Yes
    85∶14∶184.5∶14.2∶1.349000740001.5No
    85∶14∶184.4∶14.3∶1.315000300002.0Yes
    85∶14∶184.2∶14.4∶1.421000420002.0Yes
    Notes: Mn—Number average molecular weight; Mw—Weight average molecular weight.
    下载: 导出CSV

    表  3  同性萘沥青(INP)和煤焦油沥青(ICP)的元素组成(单位:wt%)

    Table  3.   Element composition of isotropic naphthalene pitch (INP) and coal tar pitch (ICP) (Unit: wt%)

    PitchCHNSO
    INP67.62.10.227.11.2
    ICP84.75.11.20.45.5
    下载: 导出CSV

    表  4  熔纺聚丙烯腈(PAN)纤维的力学性能

    Table  4.   Mechanical properties of melt-spun polyacrylonitrile (PAN) fibers

    SampleDiameter/
    μm
    Tensile
    strength/
    MPa
    Elongation/%
    P(AN-MA-ABP)51±1.8247.3±6.415.5±2.4
    0.5wt%INP/P(AN-MA-ABP)51±2.3245.6±8.117.5±2.6
    1wt%INP/P(AN-MA-ABP)50±2.1241.6±7.818.1±3.4
    3wt%INP/P(AN-MA-ABP)50±2.5214.3±8.317.2±4.5
    5wt%ICP/P(AN-MA-ABP)52±1.7175.9±7.923.2±5.1
    下载: 导出CSV

    表  5  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的原子浓度数据和原子比

    Table  5.   Atomic concentration data and atomic ratio of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV at different time

    ElementAtomic concentration/at%
    Non-irradiatedUV 20 minUV 40 minUV 60 min
    C74.672.069.967.0
    O17.321.322.326.0
    N8.16.77.87.0
    O/C0.20.30.30.4
    N/C0.10.10.10.1
    下载: 导出CSV

    表  6  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的DSC热力学数据

    Table  6.   DSC thermodynamic data of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV at different time

    AtmosphereUV irradiation time/minTonset
    /℃
    TM
    /℃
    Hc
    /(J·g−1)
    Nitrogen0303.8318.0537.8
    20296.4310.6474.8
    40294.0309.1443.7
    60292.4308.8442.1
    Air0299.9316.4725.8
    20299.6314.4683.7
    40297.7314.2678.4
    60295.0312.6676.4
    Notes: Tonset—Onset temperature of exothermic reaction (10℃/min); TM—Maximum temperature of exothermic reaction (10℃/min); ΔHc—Enthalpy of exothermic reaction (10℃/min).
    下载: 导出CSV

    表  7  UV辐照不同时间的1wt%INP/P(AN-MA-ABP)三元共聚物纤维的力学性能

    Table  7.   Mechanical properties of 1wt%INP/P(AN-MA-ABP) terpolymer fibers irradiated by UV at different time

    UV irradiation time/minTensile strength/MPaElongation/%
    0252.8±6.315.5±2.4
    20247.5±7.815.8±3.5
    40243.6±8.316.9±2.6
    60231.5±7.116.1±2.2
    下载: 导出CSV
  • [1] NEWCOMB B A. Processing, structure, and properties of carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2016,91(Part 1):262-282. doi: 10.1016/j.compositesa.2016.10.018
    [2] CHOI D, KIL H S, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon,2019,142:610-649. doi: 10.1016/j.carbon.2018.10.028
    [3] MIN B G, SON T W, JO W H, et al. Thermal stability of polyacrylonitrile in the melt formed by hydration[J]. Journal of Applied Polymer Science,1992,46(10):1793-1796. doi: 10.1002/app.1992.070461010
    [4] JIANG J X, SRINIVAS K, KIZILTAS A, et al. Rheology of polyacrylonitrile/lignin blends in ionic liquids under melt spinning conditions[J]. Molecules,2019,24(14):2650. doi: 10.3390/molecules24142650
    [5] MARTIN H J, LUO H, CHEN H, et al. Effect of ionic liquid structure on the melt processability of polyacrylonitrile (PAN) fibers[J]. ACS Applied Materials & Interfaces,2020,12(7):8663-8673.
    [6] TIAN Y C, HAN K Q, ZHANG W H, et al. Influence of melt temperature on structure of polyacrylonitrile in ionic liquids during plasticized melt spinning process[J]. Applied Mechanics and Materials,2012,(268-270):483-486.
    [7] KOENIG S, KREIS P, REINDERS L, et al. Melt spinning of propylene carbonate-plasticized poly(acrylonitrile)-co-poly(methyl acrylate)[J]. Polymers for Advanced Technologies,2020,31(8):1827-1835. doi: 10.1002/pat.4909
    [8] MILLER G C, YU J, JOSEPH R M, et al. Melt-spinnable polyacrylonitrile copolymer precursors for carbon fibers[J]. Polymer,2017,126:87-95. doi: 10.1016/j.polymer.2017.08.023
    [9] BAJAJ P, SREEKUMAR T V, SEN K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer,2001,42(4):1707-1718. doi: 10.1016/S0032-3861(00)00583-8
    [10] HAN N, ZHANG X X, WANG X C. Various comonomers in acrylonitrile based copolymers: Effects on thermal behavior[J]. Iranian Polymer Journal,2010,19(4):243-253.
    [11] HAN N, ZHANG X X, YU W Y, et al. Effects of copolymerization temperatures on structure and properties of melt-spinnable acrylonitrile-methyl acrylate copolymers and fibers[J]. Macromolecular Research,2010,18(11):1060-1069. doi: 10.1007/s13233-010-1115-7
    [12] 韩娜, 张兴祥, 王学晨. 丙烯腈-丙烯酰胺共聚物的合成与性能研究[J]. 材料科学与工程学报, 2007, 25(1):71-74. doi: 10.3969/j.issn.1673-2812.2007.01.017

    HAN Na, ZHANG Xingxiang, WANG Xuechen. Synthesis and properties of acrylonitrile-acrylamide copolymer[J]. Journal of Materials Science and Engineering,2007,25(1):71-74(in Chinese). doi: 10.3969/j.issn.1673-2812.2007.01.017
    [13] BHANU V A, RANGARAJAN P, WILES K, et al. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer,2002,43(18):4841-4850. doi: 10.1016/S0032-3861(02)00330-0
    [14] OUYANG Q, CHENG L, WANG H J, et al. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability,2008,93(8):1415-1421. doi: 10.1016/j.polymdegradstab.2008.05.021
    [15] DENG W J, LOBOVSKY A, IACONO S T, et al. Poly (acrylonitrile-co-1-vinylimidazole): A new melt processable carbon fiber precursor[J]. Polymer,2011,52(3):6221-6228.
    [16] LEE J H, JIN J U, PARK S, et al. Melt processable polyacrylonitrile copolymer precursors for carbon fibers: Rheological, thermal, and mechanical properties[J]. Journal of Industrial and Engineering Chemistry,2018,71:112-118.
    [17] RANGARAJAN P, YANG J, BHANU V, et al. Effect of comonomers on melt processability of polyacrylonitrile[J]. Journal of Applied Polymer Science,2002,85(1):69-83. doi: 10.1002/app.10655
    [18] LI X, DANG X N. Effect of potassium permanganate modification on plasticized spinning polyacrylonitrile fibers with different diameters[J]. Polymers,2018,10(12):1330-1307. doi: 10.3390/polym10121330
    [19] 赵雅娴, 武帅, 康宸, 等. H2O2改性对聚丙烯腈原丝化学结构的影响[J]. 复合材料学报, 2019, 36(1):85-95.

    ZHAO Yaxian, WU Shuai, KANG Chen, et al. Effect of H2O2 modification on the chemical structure of polyacrylonitrile precursor[J]. Acta Materiae Compositae sinica,2019,36(1):85-95(in Chinese).
    [20] PARK S, KIL H S, CHOI D, et al. Rapid stabilization of polyacrylonitrile fibers achieved by plasma-assisted thermal treatment on electron-beam irradiated fibers[J]. Journal of Industrial & Engineering Chemistry,2019,69:449-454.
    [21] SHIN H K, PARK M, KANG P H, et al. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment[J]. Journal of Industrial & Engineering Chemistry,2014,20(5):3789-3792.
    [22] MIAO P, WU D, ZENG K, et al. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile[J]. Polymer Degradation & Stability,2010,95(9):1665-1671.
    [23] LEE S W, LEE H Y, JANG S Y, et al. Tensile properties and morphology of carbon fibers stabilized by plasma treatment[J]. Carbon Letters,2011,12(1):16-20. doi: 10.5714/CL.2011.12.1.016
    [24] ZHAO W, LU Y, ZHOU L, et al. Effects on the oriented structure and mechanical properties of carbon fibers by pre-irradiating polyacrylonitrile fibers with γ ray[J]. Journal of Materials Science,2016,51(15):7073-7084. doi: 10.1007/s10853-016-9875-x
    [25] PAIVA M C, KOTASTHANE P. UV stabilization route for melt-processible PAN-based carbon fibers[J]. Carbon,2003,41(7):1399-1409. doi: 10.1016/S0008-6223(03)00041-1
    [26] SON S Y, JO A Y, JUNG G Y, et al. Accelerating the stabilization of polyacrylonitrile fibers by UV irradiation[J]. Jour-nal of Industrial & Engineering Chemistry,2019,73:47-51.
    [27] JO A Y, YOO S H, CHUNG Y S, et al. Effects of ultraviolet irradiation on stabilization of textile-grade polyacrylonitrile fibers without photo-initiator for preparing carbon fibers[J]. Carbon,2019,144:440-448. doi: 10.1016/j.carbon.2018.12.012
    [28] NASKAR A K, WALKER R A, PROULX S, et al. UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer[J]. Carbon,2005,43(5):1065-1072. doi: 10.1016/j.carbon.2004.11.047
    [29] MUKUNDAN T, BHANU V A, WILES K B, et al. A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor[J]. Polymer,2006,47(11):4163-4171. doi: 10.1016/j.polymer.2006.02.066
    [30] 臧传起. 中间相沥青基碳纤维的结构调控与性能研究[D]. 北京: 北京化工大学, 2019.

    ZANG Chuanqi. Study on structure regulation and properties of mesophase bituminous carbon fibers[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [31] 石奎. 乙烯焦油系沥青基炭纤维的制备与性能研究[D]. 长沙: 湖南大学, 2019.

    SHI Kui. Study on preparation and properties of vinyl tar pitch-based carbon fibers[D]. Hunan: Hunan University, 2019(in Chinese).
    [32] 智林杰, 史景利, 宋进仁, 等. 交联萘沥青的组成与结构特征[J]. 燃料化学学报, 2000, 28(6):546-549. doi: 10.3969/j.issn.0253-2409.2000.06.014

    ZHI Linjie, SHI Jingli, SONG Jinren, et al. Composition and structural characteristics of cross-linked naphthalene asphalt[J]. Journal of Fuel Chemistry and Technology,2000,28(6):546-549(in Chinese). doi: 10.3969/j.issn.0253-2409.2000.06.014
    [33] 秦显营. 沥青基碳纤维的制备与性能研究[D]. 上海: 东华大学, 2007.

    QIN Xianying. Preparation and properties of pitch carbon fibers[D]. Shanghai: Donghua University, 2007(in Chinese).
    [34] 周良霄. PAN纤维稳定化过程中的交联结构[D]. 上海: 东华大学, 2016.

    ZHOU Liangxiao. Cross-linked structure of PAN fibers during stabilization[D]. Shanghai: Donghua University, 2016(in Chinese).
    [35] ZHANG W L, WANG M H, ZHANG W F, et al. Significantly reduced pre-oxidation period of PAN fibers by continuous electron beam irradiation: Optimization by monitoring radical variation[J]. Polymer Degradation and Stability,2018,158:72-82. doi: 10.1016/j.polymdegradstab.2018.10.027
    [36] 刘伟华, 王谋华, 张文发, 等. γ射线辐照处理对聚丙烯腈纤维预氧化反应的影响[J]. 高分子材料科学与工程, 2015, 31(5):51-55.

    LIU Weihua, WANG Mouhua, ZHANG Wenfa, et al. Effect of γ-ray irradiation on preoxidation of polyacrylonitrile fibers[J]. Polymer Materials Science and Engineering,2015,31(5):51-55(in Chinese).
    [37] ZHANG W, WANG M, LIU W, et al. Higher dose rate effect of 500 keV EB irradiation favoring free radical annealing and pre-oxidation of polyacrylonitrile fibers[J]. Polymer Degradation and Stability,2019,167:201-209. doi: 10.1016/j.polymdegradstab.2019.07.003
    [38] 黄光林, 冯雨丁, 吴茂良. 高分子辐射化学基础[M]. 成都: 四川大学出版社, 1993.

    HUANG Guanglin, FENG Yuding, WU Maoliang. Fundamentals of polymer radiation chemistry[M]. Chengdu: Sichuan University Press, 1993(in Chinese).
    [39] LEI S, WU S, GAO A J, et al. The formation of conjugated structure and its transformation to pseudo-graphite structure during thermal treatment of polyacrylonitrile[J]. High Performance Polymers,2016,29(9):1097-1109.
    [40] ZHAO W Z, LV Y G, JIANG J Q, et al. The effect of γ-ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers[J]. RSC Advances,2015,5(30):23508-23518. doi: 10.1039/C5RA01139F
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  450
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 修回日期:  2021-10-15
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回