留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOFs及其衍生材料在锂离子电池负极中的研究进展

戴良鸿 刘劲远 彭红建 谢佑卿

戴良鸿, 刘劲远, 彭红建, 等. MOFs及其衍生材料在锂离子电池负极中的研究进展[J]. 复合材料学报, 2023, 40(4): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20220727.001
引用本文: 戴良鸿, 刘劲远, 彭红建, 等. MOFs及其衍生材料在锂离子电池负极中的研究进展[J]. 复合材料学报, 2023, 40(4): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20220727.001
DAI Lianghong, LIU Jinyuan, PENG Hongjian, et al. Research progress of MOFs and their derived materials for Li-ion battery anodes[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20220727.001
Citation: DAI Lianghong, LIU Jinyuan, PENG Hongjian, et al. Research progress of MOFs and their derived materials for Li-ion battery anodes[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20220727.001

MOFs及其衍生材料在锂离子电池负极中的研究进展

doi: 10.13801/j.cnki.fhclxb.20220727.001
基金项目: 国家联合基金(U19A2019);湖南省重大科技专项(2020GK2100)
详细信息
    通讯作者:

    彭红建,博士,副教授,硕士生导师,研究方向为电化学和电化学储能装置的关键材料 E-mail: Hongjianpeng@126.com

  • 中图分类号: TB33

Research progress of MOFs and their derived materials for Li-ion battery anodes

Funds: Joint Funds of the National Natural Science Foundation of China (U19A2019); Science and Technology Plan Key Project of Hunan Province (2020GK2100)
  • 摘要: 金属有机框架(MOFs)具有较大的比表面积和可调节的孔径,其金属离子和有机配体都具有良好的携电荷能力,近年来作为锂离子电池负极材料受到广泛关注。本文介绍了目前常用的锂离子电池MOFs负极材料,归纳了MOFs材料在锂离子电池负极中的改性策略和合成方法,且系统分析了MOFs及其衍生材料的结构与形貌设计的主要原则,指出了其未来发展趋势及研究挑战。

     

  • 图  1  3种具有代表性的锂离子电池(LIBs)纳米负极材料示意图

    Figure  1.  Schematic diagram of three representative nanostructured anode materials for Li-ion batteries (LIBs)

    图  2  6种合成策略中14种反应类型示意图[58]

    Figure  2.  Schematic diagram of 14 types of reactions in six types of synthetic strategies[58]

    图  3  一种三维多孔碳材料的制备工艺

    Figure  3.  A fabrication process of the 3D porous carbon materials

    H2BDC—1, 4-benzenedicar-boxylic acid; DMF—N, N-dimethylformamide; PVP—Polyvinyl pyrrolidone

    图  4  核壳ZnO/ZnCo2O4/C纳米球制备工艺示意图

    Figure  4.  Schematic illustration for the preparation process of core/shell ZnO/ZnCo2O4/C nanospheres

    CO(acac)2—Cobalt(II) acetylacetonat

  • [1] 张欢欢, 万琦, 石庆宇, 等. 基于金属-有机骨架的锂离子电池硅负极的研究进展[J]. 复合材料学报, 2021, 38(1):45-54. doi: 10.13801/j.cnki.fhclxb.20200921.005

    ZHANG Huanhuan, WAN Qi, SHI Qingyu, et al. Progress of silicon-based anode for lithium-ion batteries with metal-organic frameworks[J]. Acta Materiae Compositae Sinica,2021,38(1):45-54(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.005
    [2] CHEN H, LING M, HENCTLZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy storage devices[J]. Chemical Reviews,2018,118(18):8936-8982. doi: 10.1021/acs.chemrev.8b00241
    [3] LI Q M, DU J K, CHAI J L, et al. Vanadium metaphosphate V(PO3)3 derived from V-MOF as a novel anode for lithium ion batteries[J]. Chemistry Select,2021,6(31):8150-8157. doi: 10.1002/slct.202102311
    [4] 唐致远, 庄兴国, 翟玉梅. 锂离子蓄电池负极材料的研究进展[J]. 电源技术, 2000, 5(2):108-111. doi: 10.3969/j.issn.1002-087X.2000.02.014

    TANG Zhiyuan, ZHUANG Xinguo, ZHAI Yumei. Progress in studies on negative material for lithium ion battery[J]. Chinese Journal of Power Sources,2000,5(2):108-111(in Chinese). doi: 10.3969/j.issn.1002-087X.2000.02.014
    [5] 赵桃林, 申建钢, 徐凯, 等. 锂离子电池硅基负极用粘结剂的设计改性进展[J]. 复合材料学报, 2021, 38(6):1678-1690. doi: 10.13801/j.cnki.fhclxb.20210210.004

    ZHAO Taolin, SHEN Jiangang, XU Kai, et al. Design and modification progress of binders for silicon-based anodes of lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2021,38(6):1678-1690(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210210.004
    [6] LIU Y, YANG Y F. Recent progress of TiO2-based anodes for Li ion batteries[J]. Journal of Nanomaterials,2016,2016:1-15. doi: 10.1155/2016/8123652
    [7] SUNDRIYAL S, KAUR H, BHARDWAJ S, et al. Metal organic frameworks and their composites as efficient electrodes for supercapacitor applications[J]. Coordination Chemistry Reviews,2018,369:15-38. doi: 10.1016/j.ccr.2018.04.018
    [8] YANG Y, YUAN W, KANG W Q, et al. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes[J]. Nanoscale,2020,12(14):7461-7484. doi: 10.1039/C9NR10652A
    [9] 葛武杰, 高乾森, 马先果, 等. 二次电池锂金属负极的研究进展[J]. 电子元件与材料, 2020, 39(1):1-9. doi: 10.14106/j.cnki.1001-2028.2020.01.001

    GE Wujie, GAO Qiansen, MA Xianguo, et al. Research progress of lithium metal anode for secondary batteries[J]. Electronic Components and Materials,2020,39(1):1-9(in Chinese). doi: 10.14106/j.cnki.1001-2028.2020.01.001
    [10] ZHENG S Y, DONG F, PANG Y P, et al. Research progress on nanostructured metal oxides as anode materials for Li-ion battery[J]. Journal of Inorganic Materials,2020,35(12):1295-1306. doi: 10.15541/jim20200134
    [11] YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature (London),1995,378(6558):703-706. doi: 10.1038/378703a0
    [12] ZHENG X Z, LI Y F, XU Y X, et al. Metal organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries[J]. CrystEngComm,2012,14(6):2112-2116. doi: 10.1039/c2ce06350f
    [13] ZHAO H, SHENG L, WANG L, et al. The opportunity of metal organic frameworks and covalent organic frameworks in lithium ion batteries and fuel cells[J]. Energy Storage Material,2020,33:360-381. doi: 10.1016/j.ensm.2020.08.028
    [14] CHEN H, XU J, JI S, et al. Application of MOFs derived metal oxides and composites in anode materials of lithium ion batteries[J]. Progress in Chemistry,2020,32(2-3):298-308. doi: 10.7536/PC190610
    [15] RYU U J, JEE S, RAO P C, et al. Recent advances in process engineering and upcoming applications of metal-organic frameworks[J]. Coordination Chemistry Reviews,2021,426:213544. doi: 10.1016/j.ccr.2020.213544
    [16] ZHANG Y, QIU T P, JIANG F, et al. Spindle-like Ni3(HITP)2 MOFs: Synthesis and Li+ storage mechanism[J]. Applied Surface Science,2021,556:149818. doi: 10.1016/j.apsusc.2021.149818
    [17] JIANG J C, FURUKAWA H, ZHANG Y B, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society,2016,138(32):10244-10251. doi: 10.1021/jacs.6b05261
    [18] FAN W D, WANG X, XU B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. Journal of Materials Chemistry A,2018,6(47):24486-24495. doi: 10.1039/C8TA07839D
    [19] CONNOLLY B M, MADDEN D G, WHEATLEY A, et al. Shaping the future of fuel: Monolithic metal-organic frameworks for high-density gas storage[J]. Journal of the American Chemical Society,2020,142(19):8541-8549. doi: 10.1021/jacs.0c00270
    [20] WU C D, ZHAO M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J]. Advanced Materials,2017,29(14):1605446. doi: 10.1002/adma.201605446
    [21] JOHNSON B A, BEILER A M, MCCARTHY B D, et al. Transport phenomena: Challenges and opportunities for molecular catalysis in meta-organic frameworks[J]. Journal of the American Chemical Society,2020,142(28):11941-11956. doi: 10.1021/jacs.0c02899
    [22] BAKURU V R, DAVIS D, KALIDINDI S B. Cooperative catalysis at the metal-MOF interface: Hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF[J]. Dalton Transactions,2019,48(24):8573-8577. doi: 10.1039/C9DT01371G
    [23] ZHENG H Q, ZHANG Y N, LIU L F, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J]. Journal of the American Chemical Society,2016,138(3):962-968. doi: 10.1021/jacs.5b11720
    [24] JEI H R, DENG S B, HUANG Q, et al. Regenerable granular carbon nanotubes alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution[J]. Water Research,2013,47(12):4139-4147. doi: 10.1016/j.watres.2012.11.062
    [25] NAZIR A, LE H, NGUYEN A, et al. Graphene analogue metal organic framework with superior capacity and rate capability as an anode for lithium ion batteries[J]. Electrochimica Acta,2021,389:138750. doi: 10.1016/j.electacta.2021.138750
    [26] LIU X L, WU J Y, WANG M Q, et al. N-doped carbon nanocapsules as nanoreactors to boost lithium storage performance of Co-based oxide nanocrystallines[J]. Ceramics International,2020,46(17):27608-27615. doi: 10.1016/j.ceramint.2020.07.255
    [27] SHARMA N, SZUNERITS S, BOUKHERROUB R, et al. Dual-ligand Fe-metal organic framework based robust high capacity Li ion battery anode and its use in a flexible battery format for electro-thermal heating[J]. ACS Applied Energy Materials,2019,2(6):4450-4457. doi: 10.1021/acsaem.9b00688
    [28] CHENG H, SHAPTER J G, LI Y, et al. Recent progress of advanced anode materials of lithium ion batteries[J]. Journal of Energy Chemistry,2021,57:451-468. doi: 10.1016/j.jechem.2020.08.056
    [29] 张玉琪, 魏光平, 李春宏, 等. 金属有机框架材料用于锂电池负极的研究进展[J]. 电源技术, 2020, 40(1):135-138. doi: 10.3969/j.issn.1002-087X.2020.01.038

    ZHANG Yuqi, WEI Guangping, LI Chunhong, et al. Research progress of MOFs applied as anode for lithium ion battery[J]. Chinese Journal of Power Sources,2020,40(1):135-138(in Chinese). doi: 10.3969/j.issn.1002-087X.2020.01.038
    [30] JIANG Y, ZHAO H, YUE L, et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials[J]. Electrochemistry Communications,2021,122:106881. doi: 10.1016/j.elecom.2020.106881
    [31] 吴事剑, 王荷英, 李晗, 等. MIL系列MOFs材料的合成及应用研究进展[J]. 广东化工, 2012, 15(39):3-4. doi: 10.3969/j.issn.1007-1865.2012.15.002

    WU Shijian, WANG Heying, LI Han, et al. Synthesis and application of MIL—A typical series of MOFs[J]. Guangdong Chemical Industry,2012,15(39):3-4(in Chinese). doi: 10.3969/j.issn.1007-1865.2012.15.002
    [32] 李震东, 王振华, 张仕龙, 等. MOFs及其衍生物作为锂离子电池电极的研究进展[J]. 储能科学与技术, 2020, 9(1): 18-24.

    LI Zhendong, WANG Zhenhua, ZHANG Shilong, et al. Research progress of MOFs and its derivatives as electrode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 18-24(in Chinese).
    [33] HORCAJADA P, SERRE C, VALLET-REGI M, et al. Metal-organic frameworks as efficient materials for drug delivery[J]. Angewandte Chemie,2006,45(36):5974-5978. doi: 10.1002/anie.200601878
    [34] ZHONG Y R, LIN F, WANG M Y, et al. Metal organic framework derivative improving lithium metal anode cycling[J]. Advanced Functional Materials,2020,30(10):1907579. doi: 10.1002/adfm.201907579
    [35] BAI J, GAO D D, WU H M, et al. Synthesis of Ni/NiO@MIL-101(Cr) composite as novel anode for lithium-ion battery application[J]. Journal of Nanoscience and Nanotechnology,2019,19:8063-8070. doi: 10.1166/jnn.2019.16763
    [36] JIN Y, ZHAO C C, LIN Y C, et al. Fe-based metal-organic framework and its derivatives for reversible lithium storage[J]. Journal of Materials Science & Technology,2017,33(8):768-774. doi: 10.1016/j.jmst.2016.11.021
    [37] LI X X, ZHENG S S, JIN L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials,2018,8(23):1800716. doi: 10.1002/aenm.201800716
    [38] GUO A, LI Y, LIU K, et al. Porous NiO architecture prepared with coordination polymer precursor as a high performance anode material for Li-ion batteries[J]. RSC Advances,2015,5(108):89269-89272. doi: 10.1039/C5RA15452A
    [39] WANG P, LOU X B, LI C, et al. One-pot synthesis of Co-based coordination polymer nanowire for Li-ion batteries with great capacity and stable cycling stability[J]. Nano-Micro Letters,2018,10:19. doi: 10.1007/s40820-017-0177-x
    [40] ZHANG Y T, ZHANG Y L, ZHANG K B, et al. Nitrogen-doped graphene nanosheet coated nanospherical Fe3O4 from zeolitic imidazolate frameworks template as anode of lithium ion batteries[J]. Energy & Fuels,2020,34(11):14986-14994. doi: 10.1021/acs.energyfuels.0c02853
    [41] SONG Y H, ZUO L, CHEN S H, et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2015,173:588-594. doi: 10.1016/j.electacta.2015.05.111
    [42] LI Z T, ZHAO J, NIE J J, et al. Co3O4/NiO/C composites derived from zeolitic imidazolate frameworks (ZIFs) as high-performance anode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2020,24(5):1133-1142. doi: 10.1007/s10008-020-04595-1
    [43] LI Z, HUANG X X, SUN C L, et al. Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode[J]. Journal of Materials Science,2017,52(7):3979-3991. doi: 10.1007/s10853-016-0660-7
    [44] XUE Z, LI L L, CAO L J, et al. A simple method to fabricate NiFe2O4/NiO@Fe2O3 core-shelled nanocubes based on Prussian blue analogues for lithium ion battery[J]. Journal of Alloys and Compounds,2020,825:153966. doi: 10.1016/j.jallcom.2020.153966
    [45] NIE J J, FU H, LI Z T, et al. Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries[J]. Materials Letters,2021,300:130152. doi: 10.1016/j.matlet.2021.130152
    [46] LI J Q, ZHOU F C, SUN Y H, et al. FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2 ·nH2O Prussian blue analogues as an anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds,2018,740:346-354. doi: 10.1016/j.jallcom.2017.12.370
    [47] LI Z T, QIAO N, NIE J J, et al. NiO/NiFe2O4 nanocubes derived from Prussian blue as anode materials for Li-ion batteries[J]. Materials Letters,2020,275:128077. doi: 10.1016/j.matlet.2020.128077
    [48] 任正鑫. 多孔铁基普鲁士蓝衍生材料的制备及在锂离子电池中的应用[D]. 天津: 天津理工大学, 2019.

    REN Zhengxin. Porous iron-based prussian blue derivatives: Preparation and application in lithium batteries[D]. Tianjin: Tianjin University of Technology, 2019(in Chinese).
    [49] LIU D X, ZOU D T, ZHU H L, et al. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications[J]. Small,2018,14(37):1801454. doi: 10.1002/smll.201801454
    [50] DING B, WANG J, CHANG Z, et al. Self-sacrificial template-directed synthesis of metal-organic framework-derived porous carbon for energy-storage devices[J]. ChemElectroChem,2016,3(4):668-674. doi: 10.1002/celc.201500536
    [51] REDDY R, LIN J, CHEN Y Y, et al. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries[J]. Coordination Chemistry Reviews,2020,420:213434. doi: 10.1016/j.ccr.2020.213434
    [52] BI W T, ZHOU M, MA Z Y, et al. CuInSe2 ultrathin nanoplatelets: Novel self-sacrificial template-directed synthesis and application for flexible photodetectors[J]. Chemical Communications,2012,48(73):9162-9164. doi: 10.1039/c2cc34727j
    [53] ZHAO Z M, DING J W, ZHU R M, et al. The synthesis and electrochemical applications of core-shell MOFs and their derivatives[J]. Journal of Materials Chemistry A,2019,7(26):15519-15540. doi: 10.1039/C9TA03833G
    [54] YAP M H, FOW K L, CHEN G Z. Synthesis and applications of MOF derived porous nanostructures[J]. Green Energy and Environment,2017,2(3):218-245. doi: 10.1016/j.gee.2017.05.003
    [55] YU L, YU X Y, LOU X W. The design and synthesis of hollow micro-nanostructures: Present and future trends[J]. Advanced Materials,2018,30(38):1800939. doi: 10.1002/adma.201800939
    [56] ZHANG W, JIANG X F, ZHAO Y Y, et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis[J]. Chemical Science,2017,8(5):3538-3546. doi: 10.1039/C6SC04903F
    [57] KOO J, HWANG I, YU X J, et al. Hollowing out MOFs: Hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching[J]. Chemical Science,2017,8(10):6799-6803. doi: 10.1039/C7SC02886E
    [58] CAI Z X, WANG Z L, KIM J H, et al. Hollow functional materials derived from metal organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [59] ZHANG Z C, CHEN Y F, HE S, et al. Hierarchical Zn/Ni-MOF-2 nanosheet assembled hollow nanocubes for multicomponent catalytic reactions[J]. Angewandte Chemie,2014,126(46):12725-12729. doi: 10.1002/ange.201406484
    [60] LIU W, YIN R, XU X, et al. Structural engineering of low-dimensional metal organic frameworks: Synthesis, properties, and applications[J]. Advanced Science,2019,6(12):1802373. doi: 10.1002/advs.201802373
    [61] 宋良浩. 界面反应参与MOFs衍生双金属氧化物的合成及其形成机理、催化性能的研究[D]. 济南: 济南大学, 2020.

    SONG Lianghao. Interfacial reaction involved synthesis of MOFs-derived bimetal oxides and their formation mechanism and catalytic performance study[D]. Jinan: University of Jinan, 2020(in Chinese).
    [62] PARK J W, ZHENG H M, JUN Y W, et al. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles[J]. Journal of the American Chemical Society,2009,131(39):13943-13945. doi: 10.1021/ja905732q
    [63] WU L L, WANG Z, LONG Y, et al. Multishelled NixCo3–xO4 hollow microspheres derived from bimetal organic frameworks as anode materials for high performance lithium ion batteries[J]. Small,2017,13(17):1604270. doi: 10.1002/smll.201604270
    [64] 陈君, 隆继兰. 双中心MOFs衍生的Co-ZnO@CN纳米材料作为电化学催化剂用于氧还原反应的研究[J]. 分子催化, 2017, 31(5): 463-471.

    CHEN Jun, LONG Jilan. Bi-centered MOFs-derived Co-ZnO@CN nano-material as efficient electrocatalyst for oxygen reduction reaction[J]. Journal of Molecular Catalysis, 2017, 31(5): 463-471(in Chinese).
    [65] MENG J S, NIU C J, XU L H, et al. General oriented formation of carbon nanotubes from metal organic frameworks[J]. Journal of the American Chemical Society,2017,139(24):8212-8221. doi: 10.1021/jacs.7b01942
    [66] SHRIVASTAV V, SUNDRIYAL S, GOEL P, et al. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage[J]. Coordination Chemistry Reviews,2019,393:48-78. doi: 10.1016/j.ccr.2019.05.006
    [67] GUAN B Y, YU X Y, WU H B, et al. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage conversion[J]. Advanced Materials,2017,29(47):1703614. doi: 10.1002/adma.201703614
    [68] EFTEKHARI A. Low voltage anode materials for lithium-ion batteries[J]. Energy Storage Materials,2017,7:157-180. doi: 10.1016/j.ensm.2017.01.009
    [69] NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today,2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040
    [70] BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society,2017,164(1):5019-5025. doi: 10.1149/2.0251701jes
    [71] CABANA J, MONCONDUIT L, LARCHER D, et al. Beyonid intercalation based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials,2010,22(35):170-192. doi: 10.1002/adma.201000717
    [72] CAO X H, TAN C L, SINDORO M, et al. Hybrid micro-nano-structures derived from metal organic frameworks: Preparation and applications in energy storage and conversion[J]. Chemical Society Reviews,2017,46(10):2660-2677. doi: 10.1039/C6CS00426A
    [73] CHAO D L, ZHU C R, SONG M, et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array[J]. Advanced Materials,2018,30(32):1803181. doi: 10.1002/adma.201803181
    [74] DING Y C, PENG Y Q, CHEN W Q, et al. V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc ion battery[J]. Applied Surface Science,2019,493:368-374. doi: 10.1016/j.apsusc.2019.07.026
    [75] HU X S, HU H P, LI C, et al. Cobalt-based metal organic framework with superior lithium anodic performance[J]. Journal of Solid State Chemistry,2016,242(1):71-76. doi: 10.1016/j.jssc.2016.07.021
    [76] GUO Y P, FENG T T, YANG J, et al. MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage[J]. Nanoscale,2019,11(22):10763-10773. doi: 10.1039/C9NR02206F
    [77] CALBO J, GOLOMB M, WALSH A. Redox-active metal-organic frameworks for energy conversion and storage[J]. Journal of Materials Chemistry A,2019,7(28):16571-16597. doi: 10.1039/C9TA04680A
    [78] ZUO L, CHEN S H, WU J F, et al. Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal-organic framework for lithium-ion batteries anode materials[J]. RSC Advances,2014,4(106):61604-61610. doi: 10.1039/C4RA10575C
    [79] ZHAO Y, SONG Z, LI X, et al. Metal organic frameworks for energy storage and conversion[J]. Energy Storage Materials,2016,2:35-62. doi: 10.1016/j.ensm.2015.11.005
    [80] XU H J, WANG L, ZHONG J, et al. Ultra-stable and high-rate lithium ion batteries based on metal-organic framework-derived In2O3 nanocrystals hierarchically porous nitrogen-doped carbon anode[J]. Energy & Environmental Materials,2020,3(2):177-185. doi: 10.1002/eem2.12065
    [81] ZHONG Y R, YANG M, ZHOU X L, et al. Structural design for anodes of lithium ion batteries: Emerging horizons from materials to electrodes[J]. Materials Horizons,2015,2(6):553-566. doi: 10.1039/C5MH00136F
    [82] ZHANG X B, MA J, CHEN K Z. Impact of morphology of conductive agent and anode material on lithium storage properties[J]. Nano-Micro Letters,2015,7(4):360-367. doi: 10.1007/s40820-015-0051-7
    [83] 盘盈滢, 胡茜, 林晓明, 等. 核壳结构金属-有机骨架及其衍生物在锂离子电池负极材料中的应用[J]. 化学通报, 2020, 83(10):883-890. doi: 10.14159/j.cnki.0441-3776.2020.10.003

    PAN Yingying, HU Xi, LIN Xiaoming, et al. The application of core-shell MOFs and their derivatives as anode materials in lithium-ion batteries[J]. Chemistry,2020,83(10):883-890(in Chinese). doi: 10.14159/j.cnki.0441-3776.2020.10.003
    [84] GE X L, LI Z Q, WANG C X, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery[J]. ACS Applied Materials & Interfaces,2015,7(48):26633-26642. doi: 10.1021/acsami.5b08195
    [85] GUO Y C, WANG Z Y, LU X S, et al. Core-shell ZnO@C: N hybrids derived from MOFs as long-cycling anodes for lithium ion batteries[J]. Chemical Communications,2020,56(13):1980-1983. doi: 10.1039/C9CC08478A
    [86] YIN D M, HUANG G, NA Z L, et al. CuO nanorod arrays formed directly on Cu foil from MOFs as superior binder-free anode material for lithium-ion batteries[J]. ACS Energy Letters,2017,2(7):1564-1570. doi: 10.1021/acsenergylett.7b00215
    [87] QIU T J, LIANG Z B, GUO W H, et al. Metal-organic framework-based materials for energy conversion and storage[J]. ACS Energy Letters,2020,5(2):520-532. doi: 10.1021/acsenergylett.9b02625
    [88] LIU J B, FANG Y X, ZENG L X, et al. In situ fabrication of ZnO-MoO2/C hetero phase nanocomposite derived from MOFs with enhanced performance for lithium storage[J]. Journal of Alloys and Compounds,2020,817:152728. doi: 10.1016/j.jallcom.2019.152728
    [89] WANG X, XUE H, NA Z, et al. Metal organic frameworks route to prepare two-dimensional porous zinc-cobalt oxide plates as anode materials for lithium-ion batteries[J]. Journal of Power Sources,2018,396:659-666. doi: 10.1016/j.jpowsour.2018.06.086
    [90] HU M, FURUKAWA S, OHTANI R, et al. Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching[J]. Angewandte Chemie,2012,51(4):984-988. doi: 10.1002/anie.201105190
    [91] HU H, GUAN B Y, XIA B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society,2015,137(16):5590-5595. doi: 10.1021/jacs.5b02465
    [92] CHO W, PARK S, OH M. Coordination polymer nanorods of Fe-MIL-88 B and their utilization for selective preparation of hematite and magnetite nanorods[J]. Chemical Communications,2011,47(14):4138-4140. doi: 10.1039/c1cc00079a
    [93] LIU H D, LI Z Y, ZHANG L, et al. MOF-derived ZnSe/N-doped carbon composites for lithium-ion batteries with enhanced capacity and cycling life[J]. Nanoscale Research Letters,2019,14:237. doi: 10.1186/s11671-019-3055-2
    [94] WANG L, WANG Z H, XIE L L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(18):16619-16628. doi: 10.1021/acsami.9b03365
  • 加载中
图(4)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  602
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-07-02
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回